Главная > Физика > Физика для всех. Введение в сущность и структуру физики. Том 2. Современная физика
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

54. ЗАРЯД, ИЗОТОПИЧЕСКИЙ СПИН И СТРАННОСТЬ

Давно уже было высказано предположение, что протон и нейтрон, которые обладают близкими массами, одинаковыми спинами и сходным характером взаимодействия, являются, возможно, двумя состояниями одной и той же частицы, различающимися между собой лишь электрическим зарядом. Гейзенберг выдвинул гипотезу, согласно которой эти два состояния соответствуют двум проекциям внутреннего (изотопического) спина (сходного с обычным спином, но не связанного с пространством-временем). Квантовое число изотопического спина нуклона равно

причем

[Здесь наблюдается полная аналогия между изотопическим и обычным спином, или угловым моментом. Так, если спиновое квантовое число равно то его -компоненты тоже равны Обычный спин интерпретируется как собственный угловой момент (происхождение которого неизвестно), и поэтому его поведение можно связать с динамикой обычного углового момента. Формально введение изотопического спина приводит к удвоению уровней и вырождению, связанному с симметрией двух направлений однако сколько-нибудь четкая интерпретация этого нового квантового числа пока отсутствует.]

В случае протона и нейтрона электрический заряд выражается через с помощью зарядового квантового числа

так что вместо этих двух частиц можно рассматривать одну частицу, способную находиться в двух различных состояниях (фиг. 318).

Эту простую классификацию можно распространить и на -мезоны, приписав им квантовое число изотопического спина, равное 1:

Связь между зарядовым квантовым числом и -компонентой изотопического спина имеет вид

Постоянная в этой формуле для нуклона и 0 для мезона) выглядит как «бесплатное приложение».

Фиг. 318. Нуклон, заключенный в кубическом сосуде, описывается волновой функцией, которая характеризуется тремя длинами волн де Бройля Спиновое квантовое число Когда зарядовое квантовое число нуклона и нуклон является протоном; когда же он является нейтроном.

После открытия -частицы многие ожидали, что она, как и нуклон, будет зарядовым дублетом (изотопическое квантовое число равно и что вскоре будет обнаружен ее положительно заряженный двойник. В противовес этому Гелл-Манн и Нишижима предположили, что -частица является изотопическим синглетом. В этом случае ее изотопический спин равен нулю и

На этом пути им удалось ввести новое квантовое число — странность. Для нуклонов

а для -частицы

Гелл-Манн и Нишижима предположили, что дополнительная постоянная в выражениях, связывающих -компоненту изотопического

спина и зарядовое квантовое число, сама является новым квантовым числом (гиперзаряд, деленный пополам), которое определяется через два квантовых числа — «странность» и «квантовое число тяжелых частиц» В (или так называемое «барионное число»):


Квантовое число, характеризующее странность просто выражается через гиперзарядовое квантовое число которым легче пользоваться:

Барионное число равно 0 для мезонов и лептонов (электроны, мюоны и нейтрино), 1 для нуклонов и гиперонов для антинуклонов и антигиперонов. Поэтому в случае мезонов

в случае нуклонов и гиперонов (тяжелых нуклонов)

и в случае антинуклонов и антигиперонов

Во всех случаях


Теперь можно было предположить, что гиперзаряд (или странность) сохраняется при сильных и электромагнитных взаимодействиях, но не сохраняется при слабых взаимодействиях (распадах), так что процессы, в которых сохраняется странность или гиперзаряд, такие, как

протекают очень быстро вследствие сильного взаимодействия, в то время как процессы, в которых гиперзаряд не сохраняется, например

происходят в 1013 раз медленнее, так как они обусловлены слабым (распадным) взаимодействием (время жизни -частицы порядка

Со времени первого наблюдения -частицы было открыто множество новых частиц (бозонов со спинами 0 и 1 и фермионов со спинами 3/2 и больше), времена жизни которых варьируют от с до менее чем с. Одно из главных «достижений» состояло в присвоении этим частицам наименований. Некоторые из них перечислены в табл. 9 (взята из [1]). Всем новым частицам, открытым к настоящему времени, удалось приписать определенные значения странности (величина изотопического спина частиц определяется по типу зарядового мультиплета, который они образуют), согласующиеся со скоростями их рождения и распада и другими свойствами частиц.

Рассмотрим в качестве примера три S-частицы- , - которые относятся к классу барионов. Так как в данном случае имеются три зарядовых состояния, то эти частицы образуют изотопический триплет, изотопический спин которого равен 1 (число вырожденных уровней равно Можно показать, что гиперзаряд этих частиц равен нулю. Возможные нуклонные распады -частиц можно записать в следующем виде:

Во всех этих распадах гиперзаряд слева равен нулю, а справа — единице, так как гиперзаряд я-мезона — нуль, а нуклона — единица. Значит, все эти распады должны происходить в результате слабых

(кликните для просмотра скана)

взаимодействий, вероятность их мала и время жизни -частицы (если эти процессы единственно возможные) порядка с.

Но в распаде -частицы на -частицу и фотон или -мезон гиперзаряд сохраняется, так как гиперзаряды 2- и -частиц равны нулю:

Однако масса -частицы порядка 1195 МэВ, масса -мезона порядка 140 МэВ, а масса -частицы равна 1115 МэВ:

Поэтому распад невозможен, так как энергия в нем не сохраняется.

Фотонный распад энергетически возможен, однако не могут распасться на и фотон, так как заряд при этом не сохранится. (Должен излучиться не фотон, а заряженная частица.) Только -частица может распасться на и фотон:

В этом процессе, который энергетически разрешен и действительно наблюдается, гиперзаряд сохраняется. Следовательно, за этот распад ответственно электромагнитное взаимодействие, которое в 1011 раз сильнее, чем слабое взаимодействие.

Фиг. 319.

В результате время жизни - и примерно равно , причем их характерными распадами будут следующие:

Время жизни -частицы порядка а ее характерный распад таков:

Хотя сейчас и не ясно, введены ли все необходимые понятия, однако кажется, что классификация частиц, основанная на таких величинах, как странность и изотопический спин, сохранится в той или иной форме в любой будущей теории.

Имея в наличии десятки бозонов и фермионов и будучи вынужденными вводить в теорию сотни вершин типа вершины Юкавы, одна из которых изображена на фиг. 319, мы можем лишь констатировать, что та простота, которая была свойственна электродинамике (фотоны, заряженные частицы и одна фундаментальная вершина), ушла в

прошлое. Помимо всех технических проблем, возникающих в теориях, в которых исследуются сильные взаимодействия частиц с помощью вершин юкавского типа, имеется огромное количество разнообразных процессов и вершин, рассчитать следствия которых мы не в состоянии.

С точки зрения наведения порядка в хаосе частиц, распадов, взаимодействий и т. д. в условиях, когда строгая теория отсутствует, процессы, которые не происходят, представляют, наверное, не меньший интерес, чем процессы, которые наблюдаются. Основная идея анализа таких процессов состоит в приписывании частицам определенных величин (квантовых чисел), которые сохраняются при некоторых, но не при всех взаимодействиях. Все виды взаимодействий разбиваются на четыре класса, различающиеся между собой по характеру сохранения внутренних квантовых чисел — изотопического спина и странности, или гиперзаряда (табл. 10). Такая классификация позволяет понять скорости рождения и распада различных частиц.

Таблица 10

Было обнаружено, что во всех процессах, помимо классических законов сохранения (импульса, энергии и углового момента), которые предполагаются выполненными во всех реальных процессах, должны выполняться законы сохранения заряда, барионного числа и лептон-ного числа.

Закон сохранения заряда описывает чисто классический факт, состоящий в том, что сумма электрических зарядов в любой области пространства остается постоянной, если заряды не пересекают границу этой области. Если заряды рождаются, то они рождаются парами; скажем, фотон вызывает рождение электрон-позитронной пары:

Возможно, что закон сохранения числа тяжелых частиц (барионного числа) является просто усложненной формулировкой того очевидного утверждения, что наш мир устойчив. Одна тяжелая частица

может распасться на другие тяжелые частицы:

после чего распадается -мезон:

и, наконец, распадается -мезон:

Таким образом, окончательные продукты распада таковы:

причем все они устойчивы.

Если бы протон мог, например, совершать распад

то со временем все вещество во Вселенной распалось бы на электроны, нейтрино и фотоны. Насколько нам известно, этого не происходит, и данный факт можно описать, постулируя принцип сохранения тяжелых частиц: в любом процессе число барионов минус число анти-барионов остается постоянной величиной (фото 24, фиг. 320).

Менее очевидным и более поздним законом является принцип сохранения лептонов (легких фермионов — электронов, мюонов и нейтрино). Анализ исех известных процессов согласуется с этим законом.

В любом процессе число лептонов минус число антилептонов остается неизменным (фото 25). Так, например,

Фиг. 320. Расшифровка события на фото 24.

В ньютоновской теории законы сохранения (энергии, импульса, углового момента) являлись относительно частными теоремами, относящимися к свойствам систем, которые подвержены действию сил, обладающих определенным типом симметрии. В квантовой теории связь между характером симметрии силовой системы и законами сохранения не только осталась, но и приобрела новое важное значение.

Совершенно очевидно, что анализ запрещенных событий (скажем, запрещенных переходов), относящихся к энергетическим уровням водородного атома, позволил бы угадать некоторые свойства силы, действующей между электроном и протоном, если бы эта сила не была нам известна. Анализируя процессы, происходящие с этими новыми частицами, не зная характера действующих сил и будучи не в состоянии провести какие-либо вычисления, мы пытались по запрещенным процессам угадать правила отбора и квантовые числа, на основании которых можно было бы сделать выводы о характере симметрии различных взаимодействий. В результате такого анализа нам удалось установить, что помимо тех величин, которые всегда должны сохраняться (импульс, энергия, барионное число и т. д.), имеются такие величины, как странность и изотопический спин, которые сохраняются лишь при определенных взаимодействиях. Это направление исследований совершило неожиданный поворот в 1956 г.

<< Предыдущий параграф Следующий параграф >>
Оглавление