Главная > Физика > Курс теоретической механики
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Глава III. СТАТИКА

I. ГЕОМЕТРИЧЕСКАЯ СТАТИКА

Статикой называется часть механики, изучающая условия, которым должны удовлетворять силы, действующие на систему материальных точек, при которых система находится в равновесии, а также условия эквивалентности системы сил.

Равновесие, как и движение, можно изучать только по отношению к некоторой определенной системе координат, принимаемой за неподвижную, или за абсолютную. В дальнейшем будем вводить некоторые идеальные модели материальных тел, упрощающие изучение последних. В наиболее простых задачах будем рассматривать равновесия и движения таких материальных тел, положения которых с достаточной точностью могут быть определены как положения материальных точек, размерами которых можно пренебрегать при изучении движения или равновесия этих тел. Такие материальные тела будем называть материальными точками. Материальные точки могут быть представлены как результат деления физического тела на бесконечно большое число частей. Но они могут представлять и конечные тела, обладающие определенным количеством вещества, когда размеры этих тел становятся несущественными. Второй из наиболее важных моделей является модель абсолютно твердоготела. Абсолютно твердым телом называют такую совокупность материальных точек, расстояния между которыми не могут быть изменены никакими действиями. Реальные тела обычно могут изменять свою форму, при этом изменяются и расстояния между отдельными точками тел. Однако в ряде случаев эти изменения (деформации) настолько малы, что ими можно пренебрегать.

Одним из основных понятий механики является понятие силы. Силами в механике называют объективные причины, являющиеся результатом взаимодействия материальных объектов, способные вызвать движение материальных тел из состояния покоя или изменить

существующее движение последних. Равными силами называются такие, которые вызывают одинаковые движения одного и того же объекта. Так как всякое движение материальных тел имеет относительный характер, а сила определяется вызываемым ею движением, то и понятие силы должно иметь относительный характер. Одно и то же тело в различных системах отсчета в одно и то же время оказывается подверженным действию различных сил, зависящих от относительного движения систем отсчета. Мы не будем здесь заниматься вопросами происхождения сил, относя эти вопросы к курсам физики.

Мы будем говорить, что несколько сил, действующих на материальную точку, находятся в равновесии, если, будучи приложенными к этой точке, они не сообщают ей никакого движения относительно данной системы координат, и ускорение точки в этой системе остается равным нулю. Система материальных точек находится в равновесии, если она не получает никакого движения из состояния покоя от сил, действующих на эту систему.

Из повседневного опыта известно, что силы, действующие на твердое тело, имеют векторный характер. Они имеют определенную величину, направление и линию действия, а также точку приложения. Если точка приложения силы совпадает с центром тяжести тела, то последнее под действием силы начинает двигаться из состояния покоя поступательно и при изучении такого движения тела можно отвлечься от его размеров, рассматривая движение лишь одной точки — центра тяжести. Понятие материальной точки в этом случае принимает вполне реальный смысл.

Современное понятие силы, действующей на материальную точку, было дано еще Галилеем, сформулировавшим свой знаменитый закон инерции, из которого следует, что действующая на материальную точку сила изменяет ее состояние покоя или равномерного прямолинейного движения, т. е. сообщает точке ускорение. Определенные так силы Ньютон назвал ускоряющими. Направление силы, действующей на точку, определяется направлением вектора ускорения точки, которое последняя приобретает под действием силы.

Ньютон предложил измерять снлу, действующую на материальную точку, тем ускорением, которое она сообщает материальной точке, считая величину силы пропорциональной величине ускорения. Такую силу можно представить вектором F, определяемым равенством

где — ускорение точки; — коэффициент пропорциональности, называемый массой материальной точки.

Первой системой мер, принятой для измерения силы, были меры веса. Это было вызвано тем, что первое представление о силе у человека возникло в связи с тем усилием, которое он должен был приложить, чтобы удержать груз рукой. Сравнение сил с весом может быть осуществлено при помощи динамометра, сравнивающего растяжение пружины силой с растяжением той же пружины подвешенным грузом. При таком измерении при помощи упругих деформаций две силы оказываются равными, если они производят одинаковые деформации или если их действия взаимно уничтожаются, когда эти силы заставляют действовать на одну и ту же точку по одной прямой, но в противоположные стороны.

Иногда в физике рассматривают силу как истинную реальность, существующую независимо от материальных объектов, которые являются ее источником или испытывают эффект ее действия, определяя силу независимо от движения, которое она способна произвести. Такая концепция противоречит определению силы, принятому в классической механике, и нами рассматриваться не будет. Мы будем каждый раз понимать силу как результат взаимодействия различных материальных объектов, не останавливаясь на выяснении физической природы взаимодействия, и будем измерять силу тем ускорением, которое она сообщает материальной точке.

Механика изучает физические законы природы. Законы эти устанавливаются в результате наблюдений, изучения природы. Обобщая многовековой опыт человечества, Галилей и Ньютон сформулировали основные законы механики, которые должны рассматриваться как аксиомы механики. Вся классическая механика строится на этих аксиомах, имеющих в основе экспериментальные факты. Для обоснования статики будем использовать следствия из основных законов Галилея—Ньютона, рассматривая эти следствия как самостоятельные аксиомы.

<< Предыдущий параграф Следующий параграф >>
Оглавление