Главная > Разное > Сопротивление материалов (Феодосьев В.И.)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

1.2. Удлинения стержня и закон Гука. Уравнения равновесия

Размеры растянутого стержня меняются в зависимости от величины приложенных сил. Если до нагружения стержня его длина была равна то после нагружения она станет равной (рис. 1.6). Величину называют абсолютным удлинением стержня.

Рис. 1.8

Будем считать, что абсолютное удлинение и деформации связаны только с напряжениями, возникающими в стержне. В действительности имеются и другие факторы, влияющие на деформации. Так, деформации зависят от температуры и времени действия нагрузки. Неупругие деформации зависят от “истории” нагружения, т.е. от порядка возрастания и убывания внешних сил. Пока, однако, этих вопросов мы касаться не будем.

Если стержень нагружен только силой Р, то напряженное состояние является однородным и все участки растянутого стержня находятся в одинаковых условиях; деформация по оси стержня остается одной и той же, равной своему среднему значению по длине

Эта величина называется относительным удлинением стержня.

Если стержень нагружен сосредоточенной силой Р и распределенными силами (наиболее общий случай), то относительное удлинение не будет постоянным по длине стержня. Получим выражение для относительного удлинения стержня, рассматривая элемент стержня между плоскостями и

до и после нагружения (см. рис. 1.6). Если обозначить перемещение плоскости АА элемента стержня через и, то плоскость будет иметь перемещение, равное и где - дополнительное перемещение из-за растяжения элемента стержня. Тогда относительное удлинение элемента будет равно

Заметим, что вследствие равномерного распределения напряжений по сечению удлинения для всех элементарных отрезков (см. рис. 1.6), взятых на участке оказываются одинаковыми. Следовательно, если концы отрезков до нагружения образуют плоскость, то и после нагружения стержня они образуют плоскость, но смещенную вдоль оси стержня. Это положение может быть взято в основу толкования механизма растяжения и сжатия и трактуется как гипотеза плоских сечений (гипотеза Бернулли). Если эту гипотезу принять как основную, то тогда из нее, уже как следствие, вытекает высказанное ранее предположение о равномерности распределения напряжений в поперечном сечении.

В пределах малых удлинений для подавляющего большинства материалов справедлив закон Гука, который устанавливает прямую пропорциональность между напряжениями и деформациями:

Величина Е представляет собой коэффициент пропорциональности, называемый модулем упругости первого рода. Модуль упругости является физической константой материала и определяется экспериментально. Величина Е измеряется в тех же единицах, что и а, т.е. в мегапаскалях. Вместе с тем, поскольку модуль упругости может иметь довольно большие числовые значения, его предпочтительнее измерять не в мега-, а в гигапаскалях:

Для наиболее часто применяемых материалов модуль упругости Е имеет следующие значения,

Закон Гука представляет собой простейшую и очевидную аппроксимацию наблюдаемой в опытах зависимости удлинения от напряжения. Естественно, что точность этой аппроксимации определяется в первую очередь тем, сколь широкий диапазон изменения напряжения имеется в виду. Всегда можно подобрать достаточно малый интервал напряжений, чтобы в его пределах функцию можно было бы с заданной точностью рассматривать как линейную. И конечно, для разных материалов это выглядит по-разному. Для некоторых материалов, таких как, например, сталь, закон Гука соблюдается с высокой степенью точности в широких пределах изменения напряжений. Для отожженной меди, для чугуна этот интервал изменения напряжений существенно меньше. В тех случаях, когда закон Гука явно не соблюдается, деформацию задают в виде некоторой нелинейной функции от напряжения с таким расчетом, чтобы эта функция отвечала кривой, полученной при испытании материала.

Вернемся к выражению (1.4) и заменим в нем а на на Тогда получим

или

В результате получаем систему, состоящую из двух уравнений: первого уравнения системы (полагая ) и уравнения (1.5), которая позволяет определить напряженно-деформированное состояние прямолинейного стержня, нагруженного осевыми силами:

Из первого уравнения системы (1.6) находим осевое усилие а из второго - Получаемые выражения для и и будут содержать две произвольные постоянные, определяемые из двух краевых условий: при

Абсолютное удлинение стержня переменного сечения на длине будет равно

В том случае, когда стержень нагружен только по концам, нормальная сила не зависит от Если, кроме того, стержень имеет постоянные размеры поперечного сечения то из выражения (1.5) получаем

При решении многих практических задач возникает необходимость наряду с удлинениями, обусловленными напряжением учитывать также удлинения, связанные с температурным воздействием. В этом случае пользуются способом

наложения и деформацию с рассматривают как сумму силовой и чисто температурной деформации:

где а - коэффициент температурного расширения материала.

Для однородного стержня, нагруженного по концам и равномерно нагретого, получаем

Таким образом, силовая и температурная деформации рассматриваются как независимые. Основанием этому служит экспериментально установленный факт, что модуль упругости Е при умеренном нагреве слабо меняется с температурой, точно так же как и а практически не зависит от . Для стали это имеет место до температуры порядка . При более высоких температурах необходимо учитывать зависимость Е от

Рассмотрим примеры определения напряжений и перемещений в некоторых простейших случаях растяжения и сжатия.

Пример 1.1. Требуется выявить закон изменения нормальных сил, напряжений и перемещений по длине ступенчатого стержня, нагруженного на конце силой Р (рис. 1.7, а), определить числовые значения наибольшего напряжения и наибольшего перемещения, если Материал - сталь, Поскольку сила Р велкка, собственный вес стержня можно не учитывать.

Рис. 1.7

Из условий равновесия любой отсеченной части стержня вытекает, что нормальная сила в каждом сечении стержня равна внешней силе Р. Построим график изменения силы вдоль оси стержня. Графики подобного рода называются в сопротивлении материалов эпюрами. Они дают наглядное представление о законах изменения различных исследуемых величин. В данном случае эпюра нормальной силы представлена на рис. 1.7, б прямоугольником, поскольку На рисунке эпюра заштрихована линиями, которые проведены параллельно откладываемым на графике значениям . В данном случае значение силы откладывают вверх, поэтому штриховка проведена вертикально.

Для того чтобы получить эпюру напряжений а, надо ординаты эпюры изменить обратно пропорционально величине (рис. 1.7, в). Большее значение а равно

Определим перемещение и каждого сечения стержня по направлению силы Р. Перемещение сечения равно удлинению отрезка длиной . Следовательно, согласно формуле (1.6), . Таким образом, на участке изменения от нуля до I перемещение и пропорционально z (рис. 1.7, а). На втором участке стержня перемещение Зависимость и от также будет линейной. Наибольшее перемещение имеет торцевое сечение стержня: мм.

Пример 1.2. Построить эпюры нормальных сил, напряжений и перемещений для свободно подвешенного цилиндрического стержня, нагруженного силами собственного веса (рис. 1.8, о). Длина стержня площадь поперечного сечения плотность материала у.

Рис. 1.8

Нормальная сила в сечении z равна весу нижележащей части стержня: Следовательно, нормальная сила пропорциональна г. Эпюру в данном случае штрихуют горизонтальными линиями, поскольку

значения откладывают в горизонтальном налравденхн (рис. 1.8, в). Наг пряжение в сечении равно (см. рис. 1.8, в).

Перемещение и в сечении z равно удлинению верхнего участка стержня. Согласно формуле (1.5),

Таким образом, закон изменения и изображается квадратичной функцией 2. Наибольшее перемещение «шах имеет нижнее торцевое сечение (рис. 1.8, г):

Пример 1.3. Колонна (рис. 1.9, а) нагружена силой Р и силами собственного веса. Требуется подобрать такой закон изменения площади поперечного сечения чтобы напряжения во всех сечениях были одинаковы и равны Построить эпюры нормальных сил, напряжений и перемещений.

Рис. 1.9

На расстоянии от торца нормальная сжимающая сила равна

По условию задачи

откуда

Дифференцируя обе части этого равенства по z, получим или После интегрирования находим

При следовательно, и тогда искомый закон изменения площади принимает вид

Построение эпюр удобнее всего начинать с эпюры напряжения которое вдоль оси колонны по условию не меняется (рис. 1.9, б). Поскольку напряжение постоянно, то постоянным будет и относительное удлинение е. Поэтому перемещение и возрастает пропорционально расстоянию от основания колонны (рис 1.9, в).

Нормальная сила в сечении z равна Эпюра показана на рис. 1.9, г.

Рассмотренная задача относится к числу часто встречающихся в сопротивлении материалов задач на отыскание условий равнопрочности. Если напряжение в некотором теле (в данном случае в колонне) будет постоянно для всех точек объема, такую конструкцию называют равнопрочной. В подобных конструкциях материал используется наиболее эффективно.

Пример 1.4. Кронштейн нагружен на конце силой Р (рис. 1.10, а). Требуете подобрать поперечное сечение стержней АВ и с таким расчетом, чтобы возникающие в них напряжения имели одинаковую заданную величину а. При этом угол а должен быть выбран из условия минимального веса конструкции при заданном вылете кронштейна

Из условий равновесия узла В (рис. 1.10, б) находим нормальные силы в стержнях: .

Далее определяем площади поперечного сечения стержней по величине заданного напряжения и:

Рис. 1.10

Вес конструкции кронштейна пропорционален объему: Подставляя длины и площади стержней, находим

Величина V имеет минимум при .

<< Предыдущий параграф Следующий параграф >>
Оглавление