Главная > Обработка сигналов > Теория и практика вейвлет-преобразования
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

5.4.3. Эффективность кодирования изображений

Приведем табл. 5.2, показывающую эффективность кодирования двух тестовых изображений рассмотренными выше алгоритмами. Как следует из таблицы, применение адаптивных алгоритмов дает выигрыш при кодировании до 2.6 дБ при низких скоростях кодирования по сравнению с вейвлет-преобразованием. Платой за это является дополнительная вычислительная сложность.

Таблица 5.2. Сравнение результатов кодирования тестовых изображений

Итак, нами были рассмотрены адаптивные ортогональные преобразования, построенные на базе вейвлет-преобразований. Под адаптивностью здесь понимается автоматический выбор базиса для сигналов как в частотной, так и в пространственной областях. Рассмотрены алгоритмы, позволяющие осуществлять адаптацию в частотной области (вейвлет-пакеты - алгоритм одиночного дерева), сначала во временной, потом - в частотной (алгоритм двойного дерева), одновременно в обеих областях (алгоритм частотновременного дерева). Недостатком этих алгоритмов является ограничение на

бинарное разбиение во временной области. От этого недостатка свободен алгоритм гибкой сегментации, основанный на динамическом программировании. Этот алгоритм подробно не рассматривался, так как его недостатком является невозможность перенесения на двумерный случай для кодирования изображений.

В разделе 5.4 показано количество базисов, перебираемых каждым алгоритмом, вычислительная сложность и эффективность применения для сжатия изображений. Общая тенденция такова, как и следовало ожидать: чем сложнее алгоритм вычислительно, тем выше его эффективность. Таким образом, перспективы применения того или иного алгоритма зависят от конкретного приложения. Кроме того, вероятно, лучшие результаты могут быть достигнуты, если отделить процесс сегментации от преобразования при помощи пакетов вейвлетов. В настоящее время разработаны эффективные алгоритмы сегментации, которые могут быть с успехом применены. После сегментации каждый сегмент приводится к прямоугольному виду, и над ним выполняется преобразование с использованием пакетов вейвлетов.

<< Предыдущий параграф Следующий параграф >>
Оглавление