Главная > Обработка сигналов > Теория и практика вейвлет-преобразования
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Глава 10. ПРИМЕНЕНИЕ ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ ДЛЯ СЖАТИЯ ИЗОБРАЖЕНИЯ

В последнее десятилетие в мире наблюдается значительный интерес к сжатию изображений. Это вызвано стремительным развитием вычислительной техники, графических мониторов, цветных принтеров, а также цифровой техники связи. Изображение представляется в цифровом виде достаточно большим количеством бит. Так, цветная картинка размером 512 х 512 требует для своего хранения 768 кБайт. Если передавать видеопоследовательность таких картинок со скоростью 25 кадров в секунду, требуемая скорость составит 188.7 Мбит/с.

Различают сжатие изображений без потерь и с потерями. Первое характеризуется незначительными коэффициентами сжатия (от 3 до 5 раз) и находит применение в телевидении, медицине, аэрофотосъемке и других приложениях. При сжатии изображения с допустимыми потерями коэффициент сжатия может достигать сотен раз. Популярность вейвлет-преобразования (ВП) во многом объясняется тем, что оно успешно может использоваться для сжатия изображения как без потерь, так и с потерями. Так, коэффициент сжатия видеосигнала в видеокодеках семейства ADV6xx варьируется от 3 до 350 и больше раз.

Причин успешного применения несколько.

1. Известно, что вейвлет-преобразование хорошо аппроксимирует преобразование Карунена-Лоэва для фрактальных сигналов, к которым относятся и изображения.

2. Дисперсии коэффициентов субполос ортонормального вейвлет-преобразования распределены в широком диапазоне значений. Пусть дисперсии кодируются простым энтропийным кодером. Тогда стоимость кодирования всего изображения есть сумма кодирования субполос. Различные энтропии субполос приведут к стоимости кодирования значительно меньшей, чем при непосредственном кодировании изображения.

3. В результате этого перераспределения дисперсий коэффициенты вейвлет-преобразования имеют существенно негауссовскую статистику и, таким образом, меньшую энтропию, чем гауссовский сигнал той же дисперсии.

4. Наконец, коэффициенты вейвлет-декомпозиции имеют регулярные пространственно-частотные зависимости, которые с успехом используются в ряде алгоритмов кодирования.

Рассмотрим основные проблемы, возникающие при сжатии изображения при помощи вейвлет-преобразования, и возможные пути их решения.

<< Предыдущий параграф Следующий параграф >>
Оглавление