Главная > Физика > Квантовая механика, Т.2
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 15. Разбиения

Определение. Разбиением целого числа называется упорядоченная последовательность положительных целых чисел сумма которых равна

Поскольку структура циклов перестановки определяется некоторым разбиением числа то каждое разбиение определяет класс в

Неравенства. Пусть два разбиения По определению

если первый отличный от нуля член в последовательности положителен;

если первый отличный от нуля член в последовательности отрицателен.

Пример: для (Мы использовали условное обозначение [312] для

Диаграммы Юнга Данное разбиение можно представить диаграммой Юнга которая построена из клеток и состоит из строк, расположенных одна под другой. Первая строка содержит клеток, вторая— клеток строка h содержит клеток (см. рис. 31).

Таблица Юнга Первые я целых чисел можно расположить в клетках способами, получая всякий раз некоторую таблицу Юнга.

Рис. 31. Разбиения элементов и соответствующие диаграммы Юнга.

Будем обозначать символом 0 и называть нормальной таблицей такую, в которой числа и расположены в обычном порядке: последовательность в первой строке, — во второй строке и т. д.

Применяя перестановку числам, таблицы 0 мы получим новую таблицу

Отметим, что и для каждой диаграммы Юнга существует различных таблиц (см. рис. 32).

Ассоциированные разбиения. Два разбиения называются ассоциированными друг другу, если диаграмма Юнга одного получается из диаграммы Юнга другого заменой строк на столбцы (отражение относительно главной диагонали). В дальнейшем будем обозначать такое преобразование символом . Так, обозначает разбиение, ассоциированное в . Отметим, что и что равно числу элементов разбиения , равных или больших и наоборот.

Рис. 32. Несколько таблиц, соответствующих разбиениям элементов

Аналогичным образом определим диаграмму Юнга ассоциированную с и таблицу Юнга ассоциированную с . Отметим (см. рис. 32), что

но, вообще говоря,

<< Предыдущий параграф Следующий параграф >>
Оглавление