Главная > Разное > Моделирование систем
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

2.5. НЕПРЕРЫВНО-СТОХАСТИЧЕСКИЕ МОДЕЛИ (Q-СХЕМЫ)

Особенности непрерывно-стохастического подхода рассмотрим на примере использования в качестве типовых математических схем систем массового обслуживания (англ. queueing system), которые

будем называть Q-схемами. Системы массового обслуживания представляют собой класс математических схем, разработанных в теории массового обслуживания и различных приложениях для формализации процессов функционирования систем, которые по своей сути являются процессами обслуживания [6, 13, 33, 37, 51].

Основные соотношения.

В качестве процесса обслуживания могут быть представлены различные по своей физической природе процессы функционирования экономических, производственных, технических и других систем, например потоки поставок продукции некоторому предприятию, потоки деталей и комплектующих изделий на сборочном конвейере цеха, заявки на обработку информации ЭВМ от удаленных терминалов и т. д. При этом характерным для работы таких объектов является случайное появление заявок (требований) на обслуживание и завершение обслуживания в случайные моменты времени, т. е. стохастический характер процесса их функционирования. Остановимся на основных понятиях массового обслуживания, необходимых для использования Q-схем, как при аналитическом, так и при имитационном.

В любом элементарном акте обслуживания можно выделить две основные составляющие: ожидание обслуживания заявкой и собственно обслуживание заявки. Это можно изобразить в виде некоторого прибора обслуживания (рис. 2.6), состоящего из накопителя заявок в котором может одновременно находиться заявок, где — емкость накопителя, и канала обслуживания заявок (или просто канала) На каждый элемент прибора обслуживания поступают потоки событий: в накопитель — поток заявок на канал — поток обслуживаний .

Потоком событий называется последовательность событий, происходящих одно за другим в какие-то случайные моменты времени. Различают потоки однородных и неоднородных событий. Поток событий называется однородным, если он характеризуется только моментами поступления этих событий (вызывающими моментами) и задается последовательностью , где — момент наступления события — неотрицательное вещественное число. Однородный поток событий также может быть задан в виде последовательности промежутков времени между событиями которая однозначно связана с последовательностью вызывающих моментов , где

Потоком неоднородных событий называется последовательность , где — вызывающие моменты; — набор признаков события. Например, применительно к процессу обслуживания для неоднородного потока заявок могут быть

Рис. 2.6. Прибор обслуживания заявок

заданы принадлежность к тому или иному источнику заявок, наличие приоритета, возможность обслуживания тем или иным типом канала и т. п.

Рассмотрим поток, в котором события разделены интервалами времени которые вообще являются случайными величинами. Пусть интервалы независимы между собой. Тогда поток событий называется потоком с ограниченным последействием.

Пример потока событий приведен на рис. 2.7, где обозначено Т, — интервал между событиями (случайная величина); — время наблюдения, те — момент совершения события.

Интенсивность потока можно рассчитать экспериментально по формуле

где N — число событий, произошедших за время наблюдения . Если или определено какой-либо формулой то поток называется детерминированным. Иначе поток называется случайным.

Случайные потоки бывают:

— ординарными, когда вероятность одновременного появления 2-х и более событий равна нулю;

— стационарными, когда частота появления событий постоянная;

- без последействия, когда вероятность зависит от момента совершения предыдущих событий.

Поток событий называется ординарным, если вероятность того, что на малый интервал времени примыкающий к моменту времени попадает больше одного события пренебрежительно мала по сравнению с вероятностью того, что на этот же интервал времени попадает ровно одно событие Если для любого интервала событие

как сумма вероятностей событий, образующих полную группу и несовместных, то для ординарного потока событий

где — величина, порядок малости которой выше, чем , т. е.

Стационарным потоком событий называется поток, для которого вероятность появления того или иного числа событий на интервале времени зависят лишь от длины этого участка и не зависит от того, где на оси времени взят этот участок.

Рассмотрим на оси времени ординарный поток событий и найдем среднее число событий, наступающих на интервале времени примыкающем к моменту времени Г. Получим

Тогда среднее число событий, наступающих на участке времени в единицу времени, составит Рассмотрим предел этого выражения при Вели этот предел существует, то называется интенсивностью (плотностью) ординарного потока событий

Рис. 2.7. Графическое изображение N-схемы

. Интенсивность потока может быть любой неотрицательной функцией времени, имеющей размерность, обратную размерности времени. Для стационарного потока его интенсивность не зависит от времени и представляет собой постоянное значение, равное среднему числу событий, наступающих в единицу времени

Возможные приложения.

Обычно в приложениях при моделировании различных систем применительно к элементарному каналу обслуживания можно считать, что поток заявок , т. е. интервалы времени между моментами появления заявок (вызывающие моменты) на входе образует подмножество неуправляемых переменных, а поток обслуживания , т. е. интервалы времени между началом и окончанием обслуживания заявки, образует подмножество управляемых переменных.

Заявки, обслуженные каналом и заявки, покинувшие прибор по различным причинам необслуженными (например, из-за переполнения накопителя образуют выходной поток т. е. интервалы времени между моментами выхода заявок образуют подмножество выходных переменных.

Процесс функционирования прибора обслуживания П, можно представить как процесс изменения состояний его элементов во времени Переход в новое состояние для означает изменение количества заявок, которые в нем находятся (в канале накопителе Таким образом, вектор состояний для имеет вид где — состояние накопителя — накопитель пуст, — в накопителе имеется одна заявка, — накопитель полностью заполнен); — емкость накопителя измеряемая числом заявок, которые в нем могут поместиться; — состояние канала — канал свободен, -канал занят и т. д.).

В практике моделирования систем, имеющих более сложные структурные связи и алгоритмы поведения, для формализации используются не отдельные приборы обслуживания, а Q-схемы, образуемые композицией многих элементарных приборов обслуживания (сети массового обслуживания). Если каналы различных приборов обслуживания соединены параллельно, то имеет место многоканальное обслуживание (многоканальная Q-схема), а если приборы и их параллельные композиции соединены последовательно, то имеет место многофазное обслуживание (многофазная Q-схема). Таким образом, для задания Q-схемы необходимо использовать оператор сопряжения отражающий взаимосвязь элементов структуры (каналов и накопителей) между собой.

Связи между элементами Q-схемы изображают в виде стрелок (линий потока, отражающих направление движения заявок). Различают разомкнутые и замкнутые Q-схемы. В разомкнутой Q-схеме выходной поток обслуженных заявок не может снова поступить на какой-либо элемент, т. е. обратная связь отсутствует, а в замкнутых

Q-схемах имеются обратные связи, по которым заявки двигаются в направлении, обратном движению вход-выход.

Собственными (внутренними) параметрами Q-схемы будут являться количество фаз количество каналов в каждой фазе количество накопителей каждой фазы емкость накопителя Следует отметить, что в теории массового обслуживания в зависимости от емкости накопителя применяют следующую терминологию для систем массового обслуживания: системы с потерями т. е. накопитель в приборе , отсутствует, а имеется только канал обслуживания системы с ожиданием т. е. накопитель , имеет бесконечную емкость и очередь заявок не ограничивается) и системы смешанного типа (с ограниченной емкостью накопителя Всю совокупность собственных параметров -схемы обозначим как подмножество .

Для задания -схемы также необходимо описать алгоритмы ее функционирования, которые определяют набор правил поведения заявок в системе в различных неоднозначных ситуациях. В зависимости от места возникновения таких ситуаций различают алгоритмы (дисциплины) ожидания заявок в накопителе Н, и обслуживания заявок каналом каждого элементарного обслуживающего прибора -схемы. Неоднородность заявок, отражающая процесс в той или иной реальной системе, учитывается с помощью введения классов приоритетов.

В зависимости от динамики приоритетов в -схемах различают статические и динамические приоритеты. Статические приоритеты назначаются заранее и не зависят от состояний -схемы, т. е. они являются фиксированными в пределах решения конкретной задачи моделирования. Динамические приоритеты возникают при моделировании в зависимости от возникающих ситуаций. Исходя из правил выбора заявок из накопителя на обслуживание каналом можно выделить относительные и абсолютные приоритеты. Относительный приоритет означает, что заявка с более высоким приоритетом, поступившая в накопитель ожидает окончания обслуживания предшествующей заявки каналом и только после этого занимает канал. Абсолютный приоритет означает, что заявка с более высоким приоритетом, поступившая в накопитель прерывает обслуживание каналом заявки с более низким приоритетом и сама занимает канал (при этом вытесненная из К, заявка может либо покинуть систему, либо может быть снова записана на какое-то место в

При рассмотрении алгоритмов функционирования приборов обслуживания (каналов ) и накопителей необходимо также задать набор правил, по которым заявки покидают для — либо правила переполнения, по которым заявки в зависимости от заполнения ; покидают систему, либо правила ухода,

связанные с истечением времени ожидания заявки в для правила выбора маршрутов или направлений ухода. Кроме того, для заявок необходимо задать правила, по которым они остаются в канале или не допускаются до обслуживания каналом т. е. правила блокировок канала. При этом различают блокировки по выходу и по входу. Такие блокировки отражают наличие управляющих связей в Q-схеме, регулирующих поток заявок в зависимости от состояний Q-схемы. Весь набор возможных алгоритмов поведения заявок в Q-схеме можно представить в виде некоторого оператора алгоритмов поведения заявок А.

Таким образом, Q-схема, описывающая процесс функционирования системы массового обслуживания любой сложности, однозначно задается в виде .

При ряде упрощающих предположений относително подмножеств входящих потоков и потоков обслуживания (выполнение условий стационарности, ординарности и ограниченного последействия) оператора сопряжения элементов структуры (однофазное одноканальное обслуживание в разомкнутой системе), подмножества собственных параметров Н (обслуживание с бесконечной емкостью накопителя), оператора алгоритмов обслуживания заявок А (бесприоритетное обслуживание без прерываний и блокировок) для оценки вероятностно-временных характеристик можно использовать аналитический аппарат, разработанный в теории массового обслуживания. При принятых предположениях в обозначениях Кендалла будет иметь место классическая система обслуживания типа М/М/1 (одноканальная система с марковским входящим потоком заявок и марковским потоком обслуживания). Рассмотрим на примере основные аналитические соотношения для такой элементарной Q-схемы [6, 24, 37].

Првмер 2.6. Допустим, что процесс обслуживания начиняется отсутствии заявок в накопителе. Тогда состояния системы массового обслуживания описываются следующей системой уравнений:

где — вероятность нахождения системы в состоянии в момент времени , т. е. когда в имеется заявок.

Эти уравнения следуют из того, что вероятность нахождения в системе заявок в момент времени равна вероятности нахождения в системе заявок в момент I, умноженной на вероятность того, что за время в систему не поступит ни одной Заявки и ни одна заявка не будет обслужена, плюс вероятность нахождения в системе заявок в момент умноженная на вероятность того, что за время поступит одна заявка и ни одна заявка не будет обслужена, плюс вероятность нахождения в системе заявок в момент умноженная на вероятность того, что за время одна заявка покинет систему и не поступит ни одной заявки. Вероятность того, что за время не поступит ни одной заявки и ни одна заявка не покинет систему, равна . Член, содержащий при составлении дифференциального уравнения опускается. Следовательно, можно записать Относительно остальных двух членов первого уравнения заметим, что

Перевеся влево и устремив к нулю, получим систему дифференциальных уравнений

Найдем выражение для математического ожидания числа заявок, находящихся в накопителе, и среднего времени ожидания заявок в накопителе для стационарного состояния Приравняв нулю производные по времени и исключив, таким образом, время из уравнений, получим систему алгебраических уравнений

Пусть в первом уравнении . Тогда Подставив сюда значение из второго уравнения, находим Повторяя эти операции,

получаем причем так как это сумма вероятностей того, что

в системе нет ни одной заявки, имеется одна заявка, две заявки и т. д. Сумма этих вероятностей должна быть равна единице, та как рассматриваются все возможные состояния системы. Поэтому или . откуда . Следовательно, .

Полученное выражение представляет собой геометрическое распределение. Математическое ожидание числа заявок, находящихся в системе (приборе),

Отметим, что — среднее значение и возможны колебания числа заявок, ожидающих обслуживания, что можно оценить с помощью дисперсии:

При

Следовательно, . Математическое ожидание числа заявок, находящихся в накопителе,

Среднее время ожидания заявок в накопителе

Возможности оценки характеристик с использованием аналитических моделей теории массового обслуживания являются весьма ограниченными по сравнению с требованиями практики исследования и проектирования систем, формализуемых в виде Q-схем. Несравненно большими возможностями обладают имитационные модели, позволяющие исследовать Q-схему, задаваемую , без ограничений. На работу с Q-схемами при машинной реализации моделей ориентированы многие языки имитационного моделирования, например SIMULA, SIMSCRIPT, GPSS и др. Детально вопросы, связанные с имитационным моделированием -схем, будут рассмотрены далее.

<< Предыдущий параграф Следующий параграф >>
Оглавление