Главная > Разное > Моделирование систем
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

В.3. ПЕРСПЕКТИВЫ РАЗВИТИЯ МЕТОДОВ И СРЕДСТВ МОДЕЛИРОВАНИЯ СИСТЕМ В СВЕТЕ НОВЫХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

В последние годы основные достижения в различных областях науки и техники неразрывно связаны с процессом совершенствования ЭВМ. Сфера эксплуатации ЭВМ — бурно развивающаяся

отрасль человеческой практики, стимулирующая развитие новых теоретических и прикладных направлений [35]. Ресурсы современной информационно-вычислительной техники дают возможность ставить и решать математические задачи такой сложности, которые в недавнем прошлом казались нереализуемыми, например моделирование больших систем.

Аналитические и имитационные методы. Исторически первым сложился аналитический подход к исследованию систем, когда ЭВМ использовалась в качестве вычислителя по аналитическим зависимостям. Анализ характеристик процессов функционирования больших систем с помощью только аналитических методов исследования наталкивается обычно на значительные трудности, приводящие к необходимости существенного упрощения моделей либо на этапе их построения, либо в процессе работы с моделью, что может привести к получению недостоверных результатов.

Поэтому в настоящее время наряду с построением аналитических моделей большое внимание уделяется задачам оценки характеристик больших систем на основе имитационных моделей, реализованных на современных ЭВМ с высоким быстродействием и большим объемом оперативной памяти. Причем перспективность имитационного моделирования как метода исследования характеристик процесса функционирования больших систем возрастает с повышением быстродействия и оперативной памяти ЭВМ, с развитием математического обеспечения, совершенствованием банков данных и периферийных устройств для организации диалоговых систем моделирования. Это, в свою очередь, способствует появлению новых «чисто машинных» методов решения задач исследования больших систем на основе организации имитационных экспериментов с их моделями. Причем ориентация на автоматизированные рабочие места на базе персональных ЭВМ для реализации экспериментов с имитационными моделями больших систем позволяет проводить не только анализ их характеристик, но и решать задачи структурного, алгоритмического и параметрического синтеза таких систем при заданных критериях оценки эффективности и ограничениях [4, 9, 18, 23].

Достигнутые успехи в использовании средств вычислительной техники для целей моделирования часто создают иллюзию, что применение современной ЭВМ гарантирует возможность исследования системы любой сложности. При этом игнорируется тот факт, что в основу любой модели положено трудоемкое по затратам времени и материальных ресурсов предварительное изучение явлений, имеющих место в объекте-оригинале. И от того, насколько детально изучены реальные явления, насколько правильно проведена их формализация и алгоритмизация, зависит в конечном итоге успех моделирования конкретного объекта.

Средства моделирования систем. Расширение возможностей моделирования различных классов больших систем неразрывно связано

с совершенствованием средств вычислительной техники и техники связи. Перспективным направлением является создание для целей моделирования иерархических многомашинных вычислительных систем и сетей [2,7, 12, 25, 41].

При создании больших систем их компоненты разрабатываются различными коллективами, которые используют средства моделирования при анализе и синтезе отдельных подсистем. При этом разработчикам необходимы оперативный доступ к программно-техническим средствам моделирования, а также оперативный обмен результатами моделирования отдельных взаимодействующих подсистем. Таким образом, появляется необходимость в создании диалоговых систем моделирования, для которых характерны следующие особенности: возможность одновременной работы многих пользователей, занятых разработкой одной или нескольких систем, доступ пользователей к программно-техническим ресурсам системы моделирования, включая, базы данных и знаний, пакеты прикладных программ моделирования, обеспечение диалогового режима работы с различными вычислительными машинами и устройствами, включая цифровые и аналоговые вычислительные машины, установки натурного и физического моделирования, элементы реальных систем и т. п., диспетчирование работ в системе моделирования и оказание различных услуг пользователям, включая обучение работе с диалоговой системой моделирования при обеспечении дружественного интерфейса.

В зависимости от специфики исследуемых объектов в ряде случаев эффективным оказывается моделирование на аналоговых вычислительных машинах (АВМ). При этом надо иметь в виду, что АВМ значительно уступают ЭВМ по точности и логическим возможностям, но по быстродействию, схемной простоте реализации, сопрягаемости с датчиками внешней информации АВМ превосходят ЭВМ или по крайней мере не уступают им.

Для сложных динамических объектов перспективным является моделирование на базе гибридных (аналого-цифровых) вычислительных комплексов. Такие комплексы реализуют преимущества цифрового и аналогового моделирования и позволяют наиболее эффективно использовать ресурсы ЭВМ и АВМ в составе единого комплекса. При использовании гибридных моделирующих комплексов упрощаются вопросы взаимодействия с датчиками, установленными на реальных объектах, что позволяет, в свою очередь, проводить комбинированное моделирование с использованием аналого-цифровой части модели и натурной части объекта [11, 19]. Такие гибридные моделирующие комплексы могут входить в состав многомашинного вычислительного комплекса, что еще больше расширяет его возможности с точки зрения моделируемых классов больших систем.

Информационные технологии в обществе XXI века. Конец XX столетия ознаменовался интенсивным развитием и внедрением во

все сферы жизни общества информатики. Это проявилось в интенсивном совершенствовании средств вычислительной техники и техники связи, в появлении новых и в дальнейшем развитии существующих информационных технологий, а также в реализации прикладных информационных систем. Достижения информатики заняли достойное место в организационном управлении, в промышленности, в проведении научных исследований и в автоматизированном проектировании. Информатизация охватила и социальную сферу: образование, науку, культуру, здравоохранение.

Переход страны к рыночной экономике потребовал развития соответствующего информационного обеспечения. Постепенно в России формировался рынок, в котором информация начинала выступать как ресурс, имеющий коммерческий характер. Наряду с производством систем и средств информатики большое место в настоящее время занимают и информационные услуги, на базе самоокупаемости интенсивно развивается отрасль связи. Телефония, радиовещание, телевидение работают с использованием различных типов каналов связи. Компьютерная техника прочно вошла в быт и используется как в образовании, так и в воспитании подрастающего поколения.

Домашний компьютер стал естественным для многих семей. В образовании значительная доля нагрузки в учебном процессе переносится на самостоятельные задания, выполняемые на домашнем компьютере. По своему качеству домашний компьютер в настоящее время часто оказывается намного выше компьютера, используемого в школе или в ВУЗе. Характерно, что в последние годы покупая домашний компьютер, пользователь начал обращать внимание на место сборки, конфигурацию и перспективные возможности техники. Приобретается и значительное количество программных средств, в том числе записанных на CD-ROM, огромное число абонентов подключается к Интернет, значительное число пользователей работает с использованием сотовой и других сетей. Все это подтверждает, что процесс иформатизации интенсифицируется, завершается этап неуправляемой информатизации. Управляемая составляющая, которая реализовывалась в основном в образовании, в промышленности и в административном управлении оказалась явно недостаточной из-за малых финансовых средств, но в целом современный уровень информатизации позволяет констатировать, что начало следующего века станет точкой перехода из века энергетики в век информатики, как это прогнозировал Норберт Винер [8, 35].

Информатизация как процесс перехода от индустриального общества к информационному характеризуется резким перераспределением трудовых ресурсов в материальное производство и в сферу информации. Это соотношение изменяется от 3:1 к 1:3. В ряде стран суммарные расходы на компьютерную технику, телекоммуникации, электронику превысили расходы на энергетику, а поэтому, рассматривая

проблему перспектив развития образования, нам необходимо исходить из будущего, поскольку только логически разработанная картина будущего может помочь познать настоящее. Проблема становления информационного общества и составляющая ее проблема информатизации образования должна рассматриваться в тесной взаимосвязи с проблемой будущего устойчивого развития цивилизации.

Модель образовательной системы должна быть сформирована с учетом адаптации образования к модели устойчивого развития цивилизации, а отсюда вытекает проблема опережающего развития образовательной системы, которая должна удовлетворять потребностям будущего информационного общества.

Для информационного общества характерно полное удовлетворение информационных потребностей населения при завершении формирования единой информационной среды, определяющей новую культуру как общества в целом, так и каждого человека в отдельности. Информационная культура как составляющая и базис информационного общества должна закладываться уже в настоящее время. Переход от консервативной образовательной системы к опережающей мог бы базироваться на опережающем формировании информационного пространства Российского образования. Только образование может служить фундаментом новой информационной культуры.

Информационная культура конечно не ограничивается системой знаний в области информационных процессов, технологий и должна включать активно преобразовательный аспект отношения к миру. По сути информационная культура может рассматриваться как свод правил поведения в информационном обществе, в коммуникационной среде, в человеко-машинных системах, вписывающихся в мировую гуманистическую культуру человечества. Уже в настоящее время вхождение пользователя в мировую сеть позволяет получить огромные объемы информации, которая может быть предназначена и для идеологической обработки.

Необходимо воспитывать корректное отношение к получаемой информации. Информационное пространство Российского образования должно отвечать национальным интересам и базироваться на традициях отечественной культуры. Повсеместное использование зарубежной компьютерной техники сопровождается планомерным информационным идеологическим воздействием на пользователей. Можно пойти по пути защиты от чуждой нам информации, создавая соответствующие методы и средства, но особое внимание нужно обратить на информационную культуру педагога, воспитателя, учителя школы и преподавателя ВУЗа.

Уровень информационной подготовки учителя нередко отстает от уровня ученика, работающего на домашнем компьютере, подключенном к сети. Проблема развития интеллекта учащихся не может быть решена только средствами информатики, но проблема

развития науки об образовании должна разрешаться с учетом перехода в информационное общество, в котором будет сформирована инфоноосфера личности, а поэтому развитие интеллектуальных способностей личности даже в настоящее время тесно смыкается с проблемой информатизации образования. Возможности информатизации образования определяются современными достижениями информатики и методологией их использования в образовании.

Можно выделить три уровня информатики:

— физический — программно-аппаратные средства вычислительной техники и техники связи;

— логический — информационные технологии;

— прикладной — пользовательские информационные системы.

Для физического уровня характерно, что компьютерная техника и техника связи практически вся разработана за рубежом и в лучшем случае наблюдается лишь ее сборка на отечественном производстве.

Информатизация города, региона, области базируется на создании единой телекоммуникационной среды. Отличительными особенностями перспективных сетей являются интеграция услуг, предоставляемых пользователю, цифровизация, комплексное использование проводных, радио- и космических каналов связи, переход к цифровым сетям интегрального обслуживания [35]. Использование волоконно-оптических линий и сетей кабельного телевидения позволяет на одной и той же базе обеспечить передачу речи, видеосигнала, данных, служебной информации и тем самым обеспечить вхождение каждого пользователя как в Российское, так и в мировое информационное пространство.

Происходит формирование единой информационной среды на основе объединения банков данных и баз знаний, проектируются конкретные информационные системы в различных областях человеческой деятельности. Совершенствование технической базы сопровождается продвижением современных операционных систем в пользовательскую среду, развиваются открытые системы.

Модели базовых информационных технологий в образовании. Для логического уровня информатики характерно совершенствование существующих, создание и развитие новых информационных технологий. Получили развитие как теория, так и практика информационных технологий [1, 8, 35]. Развивается методология, совершенствуются средства информационных технологий. Уже в настоящее время могут быть выделены базовые информационные процессы и информационные технологии.

В рамках базовых технологий получают развитие конкретные технологии, решающие задачи в выбранных предметных областях. Переход к информационному обществу заставляет задуматься о готовности выпускников учебных заведений к жизни и к труду в обществе XXI века. Учитывая, что уже в настоящее время скорости

преобразования технологий производства стали опережать темпы смены поколений, оказывается необходимым не только совершенствование и дополнительная подготовка, но и неоднократное освоение новых видов деятельности в течение трудовой жизни.

Поэтому в информационном обществе встает проблема обучения, и непрерывное образование становится составной частью жизни каждого человека. В этих условиях информатизация означает изменение всей образовательной системы с ее ориентацией на новую информационную культуру. Освоение новой информационной культуры может в значительной степени реализовываться за счет внедрения в учебный процесс, управление образованием и в повседневную жизнь перспективных информационных технологий.

Прежде всего следует обратить особое внимание на проблему обеспечения сферы образования теорией и методикой как разработки, так и эффективного применения новых средств информационных технологий. Теория информационных технологий должна определить модели базовых информационных процессов, связанных с получением, сбором, передачей, обработкой, хранением, накоплением и представлением информации. Особое место занимают модели формализации и представления знаний.

Весьма актуальным представляется выделение базовых информационных технологий, к которым уже в настоящее время можно отнести технологии распределенного хранения и обработки, офисные технологии, мультимедиа технологии, геоинформационные технологии, технологии защиты информации, CASE-технологии, телекоммуникационные технологии [15, 35]. На основе базрвых разрабатываются прикладные информационные технологии по областям применения, позволяющие получать конкретные продукты соответствующего назначения в виде средств, систем, сред.

В рамках указанных технологий в образовании уже в настоящее время получили широкое применение:

1) компьютерные программы и обучающие системы, представляющие собой электронные учебники, учебные пособия, тренажеры, лабораторные практикумы, системы тестирования знаний и квалификации, выполненные на различных типах машинных носителей;

2) системы на базе мультимедиа-технологии, построенные с применением видеотехники, накопителей на CD-ROM и реализуемые на ПЭВМ;

3) интеллектуальные обучающие экспертные системы, которые специализируются по конкретным областям применения и имеют практическое значение как в процессе обучения, так и в учебных исследованиях;

4) информационные среды на основе баз данных и знаний, позволяющие осуществить как прямой, так и удаленный доступ к информационным ресурсам;

5) телекоммуникационные системы, реализующие электронную почту, телеконференции и т. д. и позволяющие осуществить выход в мировые коммуникационные сети;

6) электронные настольные типографии, позволяющие в индивидуальном режиме с высокой скоростью осуществить производство учебных пособий и документов на различных носителях;

7) электронные библиотеки как распределенного, так и централизованного характера, позволяющие по-новому реализовать доступ учащихся к мировым информационным ресурсам;

8) геоинформационные системы, которые базируются на технологии объединения компьютерной картографии и систем управления базами данных. В итоге удается создать многослойные электронные карты, опорный слой которых описывает базовые явления или ситуации, а каждый последующий — задает один из аспектов, процессов или явлений;

9) системы защиты информации различной ориентации (от несанкционированного доступа при хранении информации, от искажений при передаче информации, от подслушивания и т. д.).

Перспективы применения информационных технологий. Методически новые информационные технологии в образовании должны быть проработаны с ориентацией на конкретное применение. Часть технологий может поддерживать учебный процесс (лекционные и практические занятия), другие технологии способны эффективно поддержать разработку новых учебников и учебных пособий. Информационные технологии помогут также эффективно организовать проведение экспериментально-исследовательских работ как в школе, так и в ВУЗе. Особую значимость информационные технологии приобретают при самостоятельной работе учащихся на домашнем компьютере с использованием современных методов моделирования.

Какие же новые возможности открываются при внедрении современных информационных технологий в образование? На основе мультимедиа технологии появляется возможность создавать учебники, учебные пособия и другие методические материалы на машинном носителе, которые могут быть разделены на некоторые группы:

1. Учебники, представляющие собой текстовое изложение материала с большим количеством иллюстраций, которые могут быть установлены на сервире и переданы через сеть на домашний компьютер. При ограниченном количестве материала такой учебник может быть реализован в прямом доступе пользователя к серверу.

2. Учебники с высокой динамикой иллюстративного материала, выполненные на CD-ROM. Наряду с основным материалом они содержат средства интерактивного доступа, средства анимации и мультипликации, а также видеоизображения, в динамике демонстрирующие

принципы и способы реализации отдельных процессов и явлений. Такие учебники могут иметь не только образовательное, во и художественное назначение. Огромный объем памяти носителя информации позволяет реализовывать на одном оптическом диске энциклопедию, справочник, путеводитель и т. д.

3. Современные компьютерные обучающие системы для проведения учебно-исследовательских работ. Они реализовывают моделирование как процессов, так и явлений, т. е. создают новую учебную компьютерную среду, в которой обучаемый является активным, и может сам вести учебный процесс.

4. Системы виртуальной реальности, в которых учащийся становится участником компьютерной модели, отображающей окружающий мир. Для грамотного использования мультимедиа продуктов этого типа крайне важно изучение их психологических особенностей и негативных воздействий на обучаемого.

5. Системы дистанционного обучения. В сложных социально-экономических условиях дистанционное образование становится особенно актуальным для отдаленных регионов, для людей с малой подвижностью, а также при самообразовании и самостоятельной работе учащихся. Эффективная реализация дистанционного обучения возможна лишь при целенаправленной программе создания высококачественных мультимедиа продуктов учебного назначения по фундаментальным, естественнонаучным, общепрофессиональным и специальным дисциплинам.

К сожалению, это требует значительных финансовых средств и пока не окупается на коммерческой основе, необходимы существенные бюджетные ассигнования в эту область. Реализация такой программы позволит по-новому организовать учебных процесс, увеличив нагрузку на самостоятельную работу обучаемого.

Формирование новой информационной культуры должно базироваться прежде всего на определенном уровне обучения в школе, а поэтому особое внимание следует уделить содержанию программы базового курса информатики, который, с одной стороны, должен быть согласован по содержанию с последующим обучением в ВУЗе, а с другой, должен поддерживать и остальные предметы школьного образования. В курс информатики уже в настоящее время закладываются сведения по моделирования процессов и явлений, по методологии формирования информационных моделей окружающего мира. У учащихся должна возникать в процессе познания информационная картина мира. Это невозможно без формирования информационной культуры населения. В основу создания информационной культуры нового общества должна быть положена идея компьютерной поддержки каждого изучаемого предмета, нельзя подменить это изучением единственного курса информатики.

Весьма важным является принцип непрерывности информационной подготовки учащихся, который должен соблюдаться как на

стадии школьного, так и при переходе от школьного к ВУЗовскому уровню. В структуре ВУЗовского образования информатика является фундаментальной дисциплиной. Наряду с информатикой в учебном плане специальностей может предусматриваться ряд курсов информационной подготовки даже для нетехнических ВУЗов, которые должны совершенствоваться, чтобы компьютер стал естественным орудием труда в любой предметной области деятельности выпускника ВУЗа. К информационной подготовке можно отнести обучение методологии и средствам моделирования. Создание опережающей информационной среды непрерывного Российского образования требует и решения ряда методических и организационных проблем, в том числе следующие:

1. Принятие единой системы программно и аппаратно совместимых средств вычислительной техники и техники связи, используемой в непрерывном учебном процессе. Это требует сертификации используемых средств учебного назначения и реализации программы по созданию сертификационных центров и эффективному их использованию.

2. Подключение образовательных организаций к единой цифровой сети в последующим выходом в Интернет. Решение этой задачи в значительной степени реализуется в настоящее время в высшем образовании и сдерживается в школьном образовании по финансовым причинам, а также и по сложностям выполнения для отдаленных районов.

3. Формирование единой информационной среды непрерывного образования с созданием баз данных по направлениям и специальностям подготовки, которые бы включали в себя методические документы, энциклопедии, справочники, учебники и учебные пособия, а также дополнительные средства, поддерживающие учебный процесс. Актуальным является представление в международной сети наших достижений и возможностей. Необходима организация обмена информационными ресурсами Российской образовательной системы с международной.

4. Необходимо совершенствование инструментальных средств непрерывного образования, ориентированных на ускоренное освоение материала и приобретение устойчивых навыков обучаемых, а также преследующих цели индивидуального обучения. Сюда можно отнести перспективные программные оболочки по разработке компьютерных учебников и методических материалов, программные и аппаратные средства создания компьютерных обучающих систем, средства технологии разработки мультимедиа продуктов, геоинформационных систем и т. д.

5. Необходима организация инфраструктуры информатизации образования как составной части информатизации общества в целом. Эта структура должна обеспечить создание новых, тиражирование и внедрение существующих информационных технологий в непрерывное образование.

Идеологически при информатизации образования необходимо учитывать ряд принципиальных позиций:

• Эволюционное развитие сложившейся методологии образования за счет явных преимуществ новых информационных технологий, а именно, возможность наглядного, динамичного представления информатизации с использованием видеоизображений и звука, применения удаленного доступа для ознакомления с внешним и внесения собственного информационного ресурса в образовании.

• Непрерывность и преемственность компьютерного образования на всех уровнях обучения от дошкольного до послевузовского. Непрерывность может быть обеспечена компьютерной поддержкой всех предметов и дисциплин учебного процесса.

• Обеспечение свободы выбора методики, стиля и средств обучения с целью выявления творческих индивидуальных способностей обучаемого в сочетании с возможностью их коллективной деятельности на основе информационных технологий и телекоммуникационных систем.

• Создание научно и методически основанной системы базового образования на основе компьютерных технологий. Одним из реальных путей решения проблемы в целом является формирование и реализация региональных научно-технических программ с долевым федеральным и местным бюджетным финансированием при дополнительном использовании внебюджетных средств. Предметом специальных исследований коллективов Высшей школы должны стать содержание, методы и средства развития образования как опережающей системы в будущем информационном обществе. При этом фундаментальное место занимают методы и средства моделирования, на основе которых можно предсказать будущее. Только при устойчивом развитии цивилизации мы можем надеяться на последовательное становление ноосферы как сферы разума. Будущее развитие человечества должно быть управляемым и в этом аспекте, несомненно, управляемым должно быть и развитие образования.

Контрольные вопросы

В.1. Что такое модель системы?

В.2. Как определяется понятие «моделирование»?

В.3. Что называется гипотезой и аналогией в исследовании систем?

В.4. Чем отличается использование метода моделирования при внешнем и внутреннем проектировании систем?

В.5. Какие современные средства вычислительной техники используются для моделирования систем?

<< Предыдущий параграф Следующий параграф >>
Оглавление