Главная > Разное > Моделирование систем
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ГЛАВА 10. ИСПОЛЬЗОВАНИЕ МЕТОДА МОДЕЛИРОВАНИЯ ПРИ РАЗРАБОТКЕ АВТОМАТИЗИРОВАННЫХ СИСТЕМ

После изучения основ методологии моделирования, освоения технологии машинной имитации, рассмотрения вопросов реализации моделирующих алгоритмов и программ на ЭВМ необходимо, с одной стороны, подвести итоги, т. е. сформулировать, исходя из ранее рассмотренного, общие правила построения и способы реализации моделей систем, а с другой стороны, показать, как в целом работает инструмент моделирования в доступных приложениях. Поэтому в данной, заключительной, главе формулируются эвристические принципы и практические методы реализации машинных моделей, которые иллюстрируются приложениями к разработке организационно-производственных систем и информационно-вычислительных сетей, т. е. тех классов ИС, которые лежат в сфере будущей деятельности дипломированных специалистов.

10.1. ОБЩИЕ ПРАВИЛА ПОСТРОЕНИЯ И СПОСОБЫ РЕАЛИЗАЦИИ МОДЕЛЕЙ СИСТЕМ

В настоящее время метод машинного моделирования широко применяется при разработке обеспечивающих и функциональных подсистем различных АСОИУ (интегрированных АСУ, автоматизированных систем научных исследований и комплексных испытаний, систем автоматизации проектирования и т. д.). При этом, как уже отмечалось, независимо от объекта можно выделить следующие основные этапы моделирования: 1) построение концептуальной модели системы S и ее формализация; 2) алгоритмизация модели системы S и ее машинная реализация; 3) получение результатов машинного моделирования и их интерпретация.

Методология машинного моделирования. На первом этапе моделирования формулируется модель, строится ее формальная схема и решается вопрос об эффективности и целесообразности моделирования системы S (об аналитическом расчете или имитационном моделировании) на вычислительной машине (на ЭВМ, АВМ или ГВК). На втором этапе математическая модель, сформулированная на первом этапе, воплощается в машинную, т. е. решается проблема алгоритмизации модели, ее рационального разбиения на блоки и организации интерфейса между ними, а также задача получения необходимой точности и достоверности результатов при проведении машинных экспериментов. На третьем этапе ЭВМ используется для имитации процесса функционирования системы S, для сбора

необходимой информации, ее статистической обработки и интерпретации результатов моделирования.

При этом следует учитывать, что на всех этапах моделирования переход от описания к машинной модели разбиение модели на части, выбор основных и второстепенных параметров, переменных и характеристик системы являются неформальными операциями, построенными на эвристических принципах, охватывающих как механизм принятия решений, так и проверку соответствия принятого решения действительности. Обобщая полученные результаты в области методологии машинного моделирования, можно условно разделить эвристические принципы моделирования на совокупность основных правил построения моделей систем и способов их машинной реализации, причем правила определяют общие свойства, которыми должна обладать построенная машинная модель, а способы реализации дают конкретные приемы получения нужных свойств модели системы. Следует отметить, что правила построения и способы их реализации образуют единую систему, так что обособленное их рассмотрение не дает полного представления о методологии машинного моделирования [29, 36, 37, 53].

Иерархическая структура взаимосвязи эвристических правил построения и практических способов реализации машинных моделей может быть условно представлена в виде схемы (рис. 10.1), которая задает цепь неформальных действий, выполняемых при моделировании систем в широком смысле этого слова. На рисунке приняты следующие обозначения: правила: 1 — сопоставление точности и сложности модели; 2 — соразмерность погрешностей моделирования и описания; 3 — реализация блочного представления модели; 4 — специализация моделей для конкретных условий; 5 — достаточность набора элементов модели; 6 — наглядность модели для исследователя и пользователя; способы: 7 — минимальный обмен информацией между блоками; 8 — упрощение модели по критерию интерпретации; 9 — удаление блоков с модификацией критерия; 10 — замена зависимых воздействий независимыми; 11 — проверка точности на условных моделях; 12 —

Рис. 10.1 Схема взаимосвязи правил построения и способов реализации машинных моделей

проверка точности по сходимости результатов; 13 — выбор эквивалента входных блоков; 14 — сравнение моделей различной сложности; 15 — параллельное моделирование вариантов системы.

На схеме сплошными линиями показаны связи общих правил и способов с частными, пунктирными — возможность использования соответствующего правила или способа. Коротко рассмотрим основной смысл перечисленных правил и способов моделирования и их взаимосвязь.

Правила построения машинных моделей. Правило сопоставления точности и сложности модели (правило 1) характеризует компромисс между ожидаемой точностью и достоверностью результатов моделирования и сложностью модели системы S с точки зрения ее машинной реализации. Правило соразмерности погрешностей моделирования системы и ее описания (правило 2) представляет, по сути, «баланс точностей», определяемый соответствием систематической погрешности моделирования из-за неадекватности модели описанию системы S с погрешностью в задании описания вследствие неопределенности исходных данных; взаимным соответствием точностей блоков модели; соответствием систематической погрешности моделирования на ЭВМ и случайной погрешности представления результатов моделирования.

Следует помнить, что сложность модели системы S характеризуется затратами времени на построение модели затратами машинного времени на ее реализацию и объемом памяти конкретной ЭВМ, используемой для моделирования, причем выигрыш в затратах машинного времени получают при сравнительной оценке вариантов разбиения модели на блоки. Отсюда вытекает следующий способ реализации этих правил, а именно способ параллельного моделирования вариантов системы (способ 15), т. е. возможность параллельного моделирования конкурирующих вариантов исследуемой системы S с оценкой разностей соответствующих показателей качества функционирования.

Практическая реализация правил 1 и 2 возможна лишь при наличии гибкой системы, позволяющей создать достаточное разнообразие вариантов модели, т. е. необходимо выполнение правила достаточности набора элементов модели (правило 5) — типовых процедур моделирования и оптимизации в математическом и программном обеспечении моделирования.

Построение моделей во многом — творческая задача, решаемая человеком, т. е. при ее решении должно быть соблюдено правило наглядности модели для исследователя (правило 6), выполнение которого дает возможность исследователю и пользователю (заказчику) оперировать с привычными представлениями об объекте моделирования, что позволяет избежать многих ошибок и упрощает трактовку полученных результатов. В частности, необходимость блочной конструкции модели вызывается не только

особенностями ее машинной реализации, но и удобствами сохранения понятий, которыми привык оперировать пользователь.

Переходить от описания системы S к ее машинной модели наиболее рационально путем построения блочной модели, т. е. необходимо выполнение правила реализации блочного представления модели (правило 3), в соответствии с которым надо находить блоки, удобные для автономного моделирования (на ЭВМ, АВМ и ГВК), и блоки, допускающие исследования натурными методами; принимать решение о существенности или несущественности каждого блока для задачи исследования характеристик данной системы S с целью сохранения структуры описания в пределах этого блока, замены ее упрощенным описанием или удаления блока из модели.

Способы реализации машинных моделей. Разбиение на блоки с точки зрения дальнейшей реализации модели целесообразно проводить, по возможности минимизируя число связей между блоками модели, т. е. отсюда вытекает способ минимального обмена информацией между блоками (способ 7).

Кроме того, при решении вопроса о допустимости удаления блоков из модели целесообразно пользоваться способом упрощения модели по критериям интерпретации (способ 8), т. е. несущественными считаются те блоки, которые мало влияют на критерий интерпретации результатов моделирования и в силу этого могут быть удалены из модели, в том числе и в процессе моделирования системы. Способы удаления блоков различаются в зависимости от характера взаимодействия этих блоков с оставшейся частью системы. Удаляя оконечные блоки, составляющие описание взаимодействия системы S с внешней средой Е, необходимо учесть это при формировании критерия интерпретации результатов моделирования, т. е. это соответствует способу удаления блоков с модификацией критерия (способ 9).

Рассмотрим теперь способ замены блока, осуществляющего воздействие на исследуемую часть системы S. Такой блок не является автономным и его нельзя заменить одним эквивалентным, не зависимым от исследуемой части системы. Но в ряде случаев удается указать диапазон изменения переменных, т. е. функционирование исследуемой части системы можно изучать путем многократного моделирования (по числу воздействий) при различных значениях переменных внутри заданного интервала. Эти предположения реализуются способом замены зависимых воздействий независимыми (способ 10).

При реализации модели системы S необходимо решить путем сопоставления вопрос о способе выбора эквивалента входных воздействий (способ 13): упрощение замкнутого контура, образуемого входным блоком и исследуемой частью системы без разрыва обратной связи; построение вероятностного эквивалента на основе предварительного его исследования (частичного моделирования);

замена входного блока наихудшим воздействием по отношению к исследуемой части системы.

До сих пор рассматривались только блоки, реализующие структурное разделение машинной модели на непересекающиеся части, но можно использовать и временное разделение на блоки (условные подмодели), которые отражают различные этапы или режимы функционирования системы S, т. е. в этом случае в них могут входить пересекающиеся части системы. В ряде случаев выделение условных подмоделей позволяет добиться упрощений при реализации машинной модели Мы, сузить разброс результатов моделирования и тем самым сократить требуемое количество прогонов. Обобщая схему условных подмоделей, можно сформулировать правило специализации для конкретных условий (правило 4), определяющее целесообразность использования набора частных условных подмоделей, предназначенных для анализа характеристик процесса функционирования системы S в конкретных условиях и дающих возможность судить о системе в целом по совокупности частных показателей, полученных на условных подмоделях, построенных с учетом особенностей планирования машинных экспериментов.

При этом специализация полной модели системы позволяет в отдельных случаях проверить точность ее упрощенного блочного представления, т. е. отсюда вытекает способ проверки точности на условных моделях (способ 11). Условные подмодели строятся независимо друг от друга, что позволяет ускорить исследование, выполняя параллельные машинные эксперименты со всеми подмоделями, например на нескольких ЭВМ.

Динамика моделирования системы S может быть определена как движение в некотором подпространстве моделей Причем при исследовании систем движение идет в сторону усложнения модели. Отсюда вытекает способ проверки точности по сходимости результатов (способ 12), т. е. проверки точности результатов моделирования, получаемых на моделях возрастающей сложности. Такой способ позволяет двигаться «снизу — вверх» в подпространстве моделей от упрощенной модели, заведомо реализуемой на ЭВМ, в сторону ее развития и усложнения в пределах ограничений вычислительных ресурсов. В таком движении в подпространстве моделей следует остановиться, когда различие моделей становится незначительным. Эти особенности и реализуются способом сравнения моделей с различной сложностью (способ 14).

Рассмотренные эвристические правила и способы моделирования задают общую схему построения и реализации модели системы S, но не конкретные решения для каждого этапа машинного моделирования. Даже при работе с конкретным программно-техническим обеспечением для исследования определенного класса систем, например в виде пакета прикладных программ моделирования, необходимо предварительно решить ряд задач формализации

объекта моделирования, планирования машинных экспериментов и других, которые были рассмотрены в предшествующих главах.

<< Предыдущий параграф Следующий параграф >>
Оглавление