Главная > Разное > Моделирование систем
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

1.4. ВОЗМОЖНОСТИ И ЭФФЕКТИВНОСТЬ МОДЕЛИРОВАНИЯ СИСТЕМ НА ВЫЧИСЛИТЕЛЬНЫХ МАШИНАХ

Обеспечение требуемых показателей качества функционирования больших систем, связанное с необходимостью изучения протекания стохастических процессов в исследуемых и проектируемых системах S, позволяет проводить комплекс теоретических и экспериментальных исследований, взаимно дополняющих друг друга. Эффективность экспериментальных исследований сложных систем оказывается крайне низкой, поскольку проведение натурных экспериментов с реальной системой либо требует больших материальных затрат и значительного времени, либо вообще практически невозможно (например, на этапе проектирования, когда реальная система отсутствует). Эффективность теоретических исследований с практической точки зрения в полной мере проявляется лишь тогда, когда их результаты с требуемой степенью точности и достоверности могут быть представлены в виде аналитических соотношений или моделирующих алгоритмов, пригодных для получения соответствующих характеристик процесса функционирования исследуемых систем.

Средства моделирования систем.

Появление современных ЭВМ было решающим условием широкого внедрения аналитических методов в исследование сложных систем. Стало казаться, что модели и методы, например математического программирования, станут практическим инструментом решения задач управления в больших системах. Действительно, были достигнуты значительные успехи в создании новых математических методов решения этих задач, однако математическое программирование так и не стало практическим инструментом исследования процесса функционирования сложных систем, так как модели математического программирования оказались слишком грубыми и несовершенными для их эффективного использования. Необходимость учета стохастических свойств системы, недетерминированности исходной информации, наличия корреляционных связей между большим числом переменных и параметров, характеризующих процессы в системах, приводят к построению сложных математических моделей, которые не

могут быть применены в инженерной практике при исследовании таких систем аналитическим методом. Пригодные для практических расчетов аналитические соотношения удается получить лишь при упрощающих предположениях, обычно существенно искажающих фактическую картину исследуемого процесса. Поэтому в последнее время все ощутимее потребность в разработке методов, которые дали бы возможность уже на этапе проектирования систем исследовать более адекватные модели. Указанные обстоятельства приводят к тому, что при исследовании больших систем все шире применяют методы имитационного моделирования [8, 11, 19, 25, 41, 54].

Наиболее конструктивным средством решения инженерных задач на базе моделирования в настоящее время стали ЭВМ. Современные ЭВМ можно разделить на две группы: универсальные, прежде всего предназначенные для выполнения расчетных работ, и управляющие, позволяющие проводить не только расчетные работы, но прежде всего приспособленные для управления объектами в реальном масштабе времени. Управляющие ЭВМ могут быть использованы как для управления технологическим процессом, экспериментом, так и для реализации различных имитационных моделей. В зависимости от того, удается ли построить достаточно точную математическую модель реального процесса, или вследствие сложности объекта не удается проникнуть в глубь функциональных связей реального объекта и описать их какими-то аналитическими соотношениями, можно рассматривать два основных пути использования ЭВМ: как средства расчета по полученным аналитическим моделям и как средства имитационного моделирования.

Для известной аналитической модели, полагая, что она достаточно точно отображает исследуемую сторону функционирования реального физического объекта, перед вычислительной машиной стоит задача расчета характеристик системы по каким-либо математическим соотношениям при подстановке числовых значений. В этом направлении вычислительные машины обладают возможностями, практически зависящими от порядка решаемого уравнения и от требований к скорости решения, причем могут быть использованы как ЭВМ, так и АВМ.

При использовании ЭВМ разрабатывается алгоритм расчета характеристик, в соответствии с которым составляются программы (либо генерируются с помощью пакета прикладных программ), дающие возможность осуществлять расчеты по требуемым аналитическим соотношениям. Основная задача исследователя заключается в том, чтобы попытаться описать поведение реального объекта одной из известных математических моделей.

Использование АВМ, с одной стороны, ускоряет для достаточно простых случаев процесс решения задачи, с другой стороны, могут возникать погрешности, обусловленные наличием дрейфа параметров отдельных блоков, входящих в АВМ, ограниченной точностью,

с которой могут быть заданы параметры, вводимые в машину, а также неисправностями технических средств и т. д.

Перспективно сочетание ЭВМ и АВМ, т. е. использование гибридных средств вычислительной техники — гибридных вычислительных комплексов (ГВК), что в ряде случаев значительно ускоряет процесс исследования [12, 20, 37, 49].

В ГВК удается сочетать высокую скорость функционирования аналоговых средств и высокую точность расчетов на базе цифровых средств вычислительной техники. Одновременно удается за счет наличия цифровых устройств обеспечить контроль проведения операций. Опыт использования вычислительной техники в задачах моделирования показывает, что с усложнением объекта большую эффективность по скорости решения и по стоимости выполнения операций дает использование гибридной техники.

Конкретным техническим средством воплощения имитационной модели могут быть ЭВМ, АВМ и ГВК. Если использование аналоговой техники ускоряет получение конечных результатов, сохраняя некоторую наглядность протекания реального процесса, то применение средств цифровой техники позволяет осуществить контроль за реализацией модели, создать программы по обработке и хранению результатов моделирования, обеспечить эффективный диалог исследователя с моделью.

Обычно модель строится по иерархическому принципу, когда последовательно анализируются отдельные стороны функционирования объекта и при перемещении центра внимания исследователя рассмотренные ранее подсистемы переходят во внешнюю среду. Иерархическая структура моделей может раскрывать и ту последовательность, в которой изучается реальный объект, а именно последовательность перехода от структурного (топологического) уровня к функциональному (алгоритмическому) и от функционального к параметрическому.

Результат моделирования в значительной степени зависит от адекватности исходной концептуальной (описательной) модели, от полученной степени подобия описания реального объекта, числа реализаций модели и многих других факторов. В ряде случаев сложность объекта не позволяет не только построить математическую модель объекта, но и дать достаточно близкое кибернетическое описание, и перспективным здесь является выделение наиболее трудно поддающейся математическому описанию части объекта и включение этой реальной части физического объекта в имитационную модель. Тогда модель реализуется, с одной стороны, на базе средств вычислительной техники, а с другой — имеется реальная часть объекта. Это значительно расширяет возможности и повышает достоверность результатов моделирования.

Имитационная система реализуется на ЭВМ и позволяет исследовать имитационную модель М, задаваемую в виде определенной совокупности отдельных блочных моделей и связей между ними

в их взаимодействии в пространстве и времени при реализации какого-либо процесса. Можно выделить три основные группы блоков: блоки, характеризующие моделируемый процесс функционирования системы S; блоки, отображающие внешнюю среду Е и ее воздействие на реализуемый процесс; блоки, играющие служебную вспомогательную роль, обеспечивая взаимодействие первых двух, а также выполняющие дополнительные функции по получению и обработке результатов моделирования. Кроме того, имитационная система характеризуется набором переменных, с помощью которых удается управлять изучаемым процессом, и набором начальных условий, когда можно изменять условия проведения машинного эксперимента.

Таким образом, имитационная система есть средство проведения машинного эксперимента, причем эксперимент может ставиться многократно, заранее планироваться, могут определяться условия его проведения. Необходимо при этом выбрать методику оценки адекватности получаемых результатов и автоматизировать как процессы получения, так и процессы обработки результатов в ходе машинного эксперимента.

Обеспечение моделирования.

Эксперимент с имитационной моделью требует серьезной подготовки, поэтому имитационная система характеризуется наличием математического, программного, информационного, технического, эргономического и других видов обеспечения.

Математическое обеспечение имитационной системы включает в себя совокупность математических соотношений, описывающих поведение реального объекта, совокупность алгоритмов, обеспечивающих как подготовку, так и работу с моделью. Сюда могут быть отнесены алгоритмы ввода исходных данных, имитации, вывода, обработки.

Программное обеспечение по своему содержанию включает в себя совокупность программ: планирования эксперимента, имитационной модели, проведения эксперимента, обработки и интерпретации результатов. Кроме того, программное обеспечение имитационной системы должно обеспечивать синхронизацию процессов в модели, т. е. необходим блок, организующий псевдопараллельное выполнение процессов в модели. Машинные эксперименты с имитационными моделями не могут проходить без хорошо разработанного и реализованного информационного обеспечения.

Информационное обеспечение включает в себя средства и технологию организации и реорганизации базы данных моделирования, методы логической и физической организации массивов, формы документов, описывающих процесс моделирования и его результаты. Информационное обеспечение имитационной системы является наименее разработанной частью, поскольку только в настоящее время наблюдается переход к созданию сложных имитационных моделей и разрабатывается методология их использования

при анализе и синтезе сложных систем с использованием концепции базы данных и знаний.

Техническое обеспечение имитационной системы включает в себя прежде всего средства вычислительной техники, связи и обмена между оператором и сетью ЭВМ, ввода и вывода информации, управления проведением эксперимента. К техническому обеспечению предъявляются весьма серьезные требования по надежности функционирования, так как сбои и отказы технических средств, ошибки оператора ЭВМ могут резко увеличить время работы с имитационной моделью и даже привести к неверным конечным результатам.

Эргономическое обеспечение имитационной системы представляет собой совокупность научных и прикладных методик и методов, а также нормативно-технических и организационно-методических документов, используемых на всех этапах взаимодействия человека-экспериментатора с инструментальными средствами (ЭВМ, гибридными комплексами и т. д.). Эти документы, используемые на всех стадиях разработки и эксплуатации имитационных систем и их элементов, предназначены для формирования и поддержания эргономического качества путем обоснования и выбора организационно-проектных решений, которые создают оптимальные условия для высокоэффективной деятельности человека во взаимодействии с моделирующим комплексом.

Таким образом, имитационная система может рассматриваться как машинный аналог сложного реального процесса. Позволяет заменить эксперимент с реальным процессом функционирования системы экспериментом с математической моделью этого процесса в ЭВМ. В настоящее время имитационные эксперименты широко используют в практике проектирования сложных систем, когда реальный эксперимент невозможен.

Возможности машинного моделирования.

Несмотря на то что имитационное моделирование на ЭВМ является мощным инструментом исследования систем, его применение рационально не во всех случаях. Известно множество задач, решаемых более эффективно другими методами. Вместе с тем для большого класса задач исследования и проектирования систем метод имитационного моделирования наиболее приемлем. Правильное его употребление возможно лишь в случае четкого понимания сущности метода имитационного моделирования и условий его использования в практике исследования реальных систем при учете особенностей конкретных систем и возможностей их исследования различными методами.

В качестве основных критериев целесообразности применения метода имитационного моделирования на ЭВМ можно указать следующие: отсутствие или неприемлемость аналитических, численных и качественных методов решения поставленной задачи; наличие достаточного количества исходной информации о моделируемой системе S для обеспечения возможности построения адекватной

имитационной модели; необходимость проведения на базе других возможных методов решения очень большого количества вычислений, трудно реализуемых даже с использованием ЭВМ; возможность поиска оптимального варианта системы при ее моделировании на ЭВМ.

Имитационное моделирование на ЭВМ, как и любой метод исследований, имеет достоинства и недостатки, проявляющиеся в конкретных приложениях [37, 43, 46]. К числу основных достоинств метода имитационного моделирования при исследовании сложных систем можно отнести следующие: машинный эксперимент с имитационной моделью дает возможность исследовать особенности процесса функционирования системы S в любых условиях; применение ЭВМ в имитационном эксперименте существенно сокращает продолжительность испытаний по сравнению с натурным экспериментом; имитационная модель позволяет включать результаты натурных испытаний реальной системы или ее частей для проведения дальнейших исследований; имитационная модель обладает известной гибкостью варьирования структуры, алгоритмов и параметров моделируемой системы, что важно с точки зрения поиска оптимального варианта системы; имитационное моделирование сложных систем часто является единственным практически реализуемым методом исследования процесса функционирования таких систем на этапе их проектирования.

Основным недостатком, проявляющимся при машинной реализации метода имитационного моделирования, является то, что решение, полученное при анализе имитационной модели М, всегда носит частный характер, так как оно соответствует фиксированным элементам структуры, алгоритмам поведения и значениям параметров системы S, начальных условий и воздействий внешней среды Е. Поэтому для полного анализа характеристик процесса функционирования систем, а не получения только отдельной точки приходится многократно воспроизводить имитационный эксперимент, варьируя исходные данные задачи. При этом, как следствие, возникает увеличение затрат машинного времени на проведение эксперимента с имитационной моделью процесса функционирования исследуемой системы S.

Эффективность машинного моделирования.

При имитационном моделировании, так же как и при любом другом методе анализа и синтеза системы S, весьма существен вопрос его эффективности. Эффективность имитационного моделирования может оцениваться рядом критериев, в том числе точностью и достоверностью результатов моделирования, временем построения и работы с моделью М, затратами машинных ресурсов (времени и памяти), стоимостью разработки и эксплуатации модели. Очевидно, наилучшей оценкой эффективности является сравнение получаемых результатов с реальным исследованием, т. е. с моделированием на реальном объекте при проведении натурного эксперимента. Поскольку это не всегда

удается сделать, статистический подход позволяет с определенной степенью точности при повторяемости машинного эксперимента получить какие-то усредненные характеристики поведения системы. Существенное влияние на точность моделирования оказывает число реализаций, и в зависимости от требуемой достоверности можно оценить необходимое число реализаций воспроизводимого случайного процесса.

Существенным показателем эффективности являются затраты машинного времени. В связи с использованием ЭВМ различного типа суммарные затраты складываются из времени по вводу и выводу данных по каждому алгоритму моделирования, времени на проведение вычислительных операций, с учетом обращения к оперативной памяти и внешним устройствам, а также сложности каждого моделирующего алгоритма. Расчеты затрат машинного времени являются приближенными и могут уточняться по мере отладки программ и накопления опыта у исследователя при работе с имитационной моделью. Большое влияние на затраты машинного времени при проведении имитационных экспериментов оказывает рациональное планирование таких экспериментов. Определенное влияние на затраты машинного времени могут оказать процедуры обработки результатов моделирования, а также форма их представления.

Построение имитационных моделей больших систем и проведение машинных экспериментов с этими моделями представляют собой достаточно трудоемкий процесс, в котором в настоящее время много неизученного. Однако специалисты в области проектирования, исследования и эксплуатации больших систем должны в совершенстве знать методологию машинного моделирования, сложившуюся к настоящему времени, чтобы быть готовыми к появлению ЭВМ следующих поколений, которые позволят сделать еще один существенный шаг в автоматизации построения моделей и использования имитационного моделирования систем.

Контрольные вопросы

1.1. В чем сущность системного подхода к моделированию систем на ЭВМ?

1.2. Что такое процесс функционирования системы?

1.3. В каком соотвошеняи находятся понятия «эксперимент» и «машинное моделирование»?

1.4. Каковы основные характерные черты машинной модели?

1.5. В чем заключается цель моделирования системы на ЭВМ?

1.6. Какие существуют классификационные признаки видов моделирования систем?

1.7. Что собой представляет математическое моделирование систем?

1.8. Какие особенности характеризуют имитационное моделирование систем?

1.9. В чем суть метода статистического моделирования на ЭВМ?

1.10. Чем определяется эффективность моделирования систем на ЭВМ?

<< Предыдущий параграф Следующий параграф >>
Оглавление