Главная > Физика > Факультативный курс физики, 10 кл.
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Дифракция и разрешающая способность оптических приборов.

Явление дифракции ставит предел для разрешающей способности многих оптических инструментов и человеческого глаза.

При дневном освещении диаметр зрачка, т. е. диаметр D отверстия, на котором происходит дифракция света, равен примерно 2 мм; длину волны света примем равной Тогда угловой радиус а центрального светлого дифракционного пятна при попадании на зрачок глаза параллельного пучка света может быть определен по формуле (15.3):

Таким образом, в результате дифракции бесконечно удаленный точечный источник воспринимается глазом как светлое пятно

Рис. 66

с угловым радиусом, равным примерно одной угловой минуте. Две светящиеся точки могут восприниматься глазом как отдельные источники света при условии, если угловое расстояние между ними превышает угловой радиус центрального дифракционного светлого пятна от одного точечного источника (рис. 66). Следовательно, разрешающая способность человеческого глаза равна примерно одной угловой минуте.

При фотографирований звезд с помощью телескопа изображение звезд на фотопластинке получается не точечным. Это является следствием дифракции света на отверстии объектива телескопа (рис. 67). Радиус центрального светлого дифракционного пятна на фотопластинке можно определить из условия (15.3):

Рис. 67

где — фокусное расстояние. Но, с другой стороны,

Поэтому

откуда

Выражение (15.4) показывает, что изображения звезд, на фотопластинке тем ближе к точечным, чем больше диаметр D объектива телескопа и чем меньше его фокусное расстояние F.

Оценим разрешающую способность крупнейшего в мире советского телескопа с диаметром объектива 6 м:

Следовательно, с помощью самого большого в мире оптического телескопа можно различить на небе светящиеся объекты: звезды, детали на поверхности планет, отстоящие друг от друга не менее чем на две сотые угловой секунды.

Явление дифракции ограничивает и разрешающую способность микроскопа. Очевидно, что если в изображении, построенном объективом микроскопа, две светящиеся точки становятся неразличимыми в результате наложения их дифракционных изображений, то дальнейшее увеличение изображения с помощью окуляра не может сделать их различимыми. Следовательно, как и в случае определения разрешающей способности глаза и телескопа, минимальное угловое расстояние между точками, которые могут быть разрешены как отдельные источники света, приблизительно равно угловому радиусу а центрального светлого дифракционного пятна. Согласно выражению (15.3), угол выражается через диаметр объектива D и длину световой волны :

Обозначив расстояние от предмета до объектива микроскопа через (рис. 68), получим для минимального линейного расстояния у между двумя светящимися точками и В, на котором они могут быть разрешены при наблюдении в микроскоп, следующее выражение:

Рис. 68

Отсюда видно, что разрешающая способность микроскопа возрастает с увеличением диаметра объектива микроскопа, с уменьшением длины световой волны и расстояния от объектива до объекта.

Так как объектив микроскопа должен построить действительное изображение, то

Следовательно, для уменьшения расстояния необходимо использовать возможно более короткофокусные линзы. Увеличение разрешающей способности объектива микроскопа при заданном фокусном расстоянии путем увеличения диаметра D объектива ограничено естественным пределом:

где — радиус кривизны линзы. Это означает, что плоско-выпуклая линза, обычно применяемая в качестве первой линзы объектива микроскопа, должна быть полушаровой.

Так как фокусное расстояние плосковыпуклой линзы определяется формулой

то для объектива микроскопа можно записать соотношение:

Учитывая это, можно минимальное расстояние, на котором могут находиться две светящиеся точки, различимые с помощью микроскопа, выразить так:

Принимая показатель преломления стекла, из которого сделана линза объектива, получаем:

Таким образом, минимальное расстояние, на котором с помощью микроскопа могут быть разрешены две светящиеся точки при оптимальной конструкции объектива, равно приблизительно длине световой волны.

Один из возможных путей увеличения разрешающей способности оптического микроскопа заключается в использовании коротковолнового ультрафиолетового излучения. Так как ультрафиолетовое излучение не воспринимается человеческим глазом, но сильно действует на фотопластинку, изображение фотографируется, проявляется и потом рассматривается.

<< Предыдущий параграф Следующий параграф >>
Оглавление