Главная > Физика > Факультативный курс физики, 10 кл.
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Эффект Мессбауэра.

Из того факта, что спектры излучения атомных ядер возникают подобно спектрам излучения атомов и молекул, казалось почти очевидным, что атомные ядра, излучающие при переходе из возбужденного состояния в нормальное гамма-кванты с некоторой частотой должны в нормальном состоянии избирательно поглощать такие же кванты. Резонансное поглощение гамма-кванта должно переводить ядро в возбужденное состояние подобно тому, как поглощение света переводит в возбужденное состояние атом или молекулу. Однако попытки

Рис. 121

экспериментального обнаружения резонансного поглощения гамма-квантов такими же атомными ядрами, какими эти кванты излучались, долгое время были безрезультатными.

Отрицательные результаты опытов по обнаружению резонансного поглощения гамма-квантов имеют простое объяснение. Если переход ядра из возбужденного состояния в нормальное состояние происходит путем излучения гамма-кванта, то энергия этого кванта не равна в точности разности энергий По закону сохранения импульса при излучении гамма-кванта атомное ядро приобретает импульс, равный импульсу излученного гамма-кванта и направленный в противоположную сторону. Ядро испытывает при излучении фотона отдачу подобно орудию при выстреле. В связи с этим освобожденная энергия распределяется между гамма-квантом и ядром. Следовательно, энергия фотона меньше разности на величину кинетической энергии ядра, испытавшего отдачу:

Понятно, что энергия этого гамма-кванта меньше энергии, необходимой для перевода такого же ядра из нормального состояния в возбужденное:

Немецкий физик Р. Мессбауэр в 1958 г. показал, что в некоторых кристаллах можно создать такие условия, при которых импульс отдачи при излучении гамма-кванта сообщается не отдельному ядру, а всему кристаллу в целом. При этом изменение кинетической энергии кристалла из-за большой его массы (по сравнению с массой одного ядра) приближается к нулю, а энергия излученного гамма-кванта оказывается почти в точности равной разности При пропускании пучка таких гамма-квантов через образец, содержащий атомные ядра того же изотопа, наблюдается резонансное поглощение.

Замечательной особенностью эффекта Мессбауэра является необычайно малая ширина спектральной линии поглощения, т. е. узость резонансного пика поглощения. Например, при использовании изотопа железа резонанс нарушается при изменении частоты гамма-кванта на величину составляющую от его частоты

Это значит, что появляется возможность зарегистрировать изменение энергии гамма-кванта на величину, составляющую от ее первоначального значения!

Использование эффекта Мессбауэра позволило осуществить один из самых тонких экспериментов современной физики — обнаружение гравитационного красного смещения спектральных

линий. Существование гравитационного красного смещения предсказано общей теорией относительности. Приводим здесь упрощенное объяснение этого эффекта, основанное на использовании закона взаимосвязи массы и энергии.

Гамма-фотон с энергией обладает массой:

При его перемещении в поле тяготения Земли вверх на высоту Н совершается работа в результате чего энергия фотона убывает на величину:

Этому убыванию энергии соответствует уменьшение частоты:

Отсюда определяется относительное изменение частоты кванта:

Для высоты получаем:

Таким образом, при движении вертикально вверх на высоту частота любого фотона убывает на от своего первоначального значения. И столь малое изменение частоты тем не менее удалось экспериментально обнаружить в 1960 г. путем использования резонансного поглощения гамма-лучей в ядрах изотопа железа

<< Предыдущий параграф Следующий параграф >>
Оглавление