Главная > Обработка сигналов > Спектральный анализ и его приложения. Выпуск 1
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

5.2.6. Интерпретация корреляционной функции

Случайный процесс называется гауссовским, или нормальным, если многомерное распределение, связанное с произвольным набором значений времени, является многомерным нормальным распределением. В этом случае процесс полностью определяется своим средним значением, дисперсией и корреляционной функцией. Однако существует обширный класс негауссовских процессов, имеющих ту же самую корреляционную функцию, что и заданный гауссовский процесс, но заметно отличающихся от него в других отношениях. Например, в разд. 5.2.4 было показано, что модель (5.2.24) приводит к показательной корреляционной функции Если входной процесс системы первого порядка

(5.2.24) является нормальным, то можно показать, что выход также будет нормальным и, таким образом, полностью задается своей корреляционной функцией.

Сейчас мы построим другой процесс, имеющий показательную корреляционную функцию, но в других отношениях сильно отличающийся от нормального процесса. Этот процесс называется случайным телеграфным сигналом и описан в [9]. Альфа-частицы радиоактивного источника служат для запуска триггерного устройства, принимающего попеременно значения +1 и -1.

Рис. 5.10. Реализация случайного телеграфного сигнала.

Моменты в которые происходят изменения процесса, образуют пуассоновский процесс с параметром так что типичная реализация процесса могла бы быть такой, как показано на рис. 5.10. Предполагая, что процесс начался при мы получим

откуда Следовательно, ковариационная функция равна

где

Просуммировав эти ряды, получим

так как Если то эта функция совпадает с корреляционной функцией (5.2.25). Так как распределение сосредоточено в двух точках ±1, поведение этого процесса заметна отличается от нормального с той же самой корреляционной функцией. В действительности такие негауссовские процессы нужно описывать с помощью их старших моментов

Важность этого раздела для эмпирического анализа временных рядов заключается в том, что при интерпретации корреляционной функции (и, как мы увидим ниже, соответствующего спектра) необходима определенная осторожность в случае, если процесс негауссовский. Может, однако, оказаться, что после некоторого преобразования, основанного на эмпирической плотности вероятности, распределение будет более близким к нормальному. Например, неотрицательная величина, такая, как температура или давление, возможно, стала бы более близкой к нормальной, если бы был использован логарифмический масштаб. Заметим, однако, что если даже такое преобразование и приближает одномерную плотность к нормальной, оно не обязательно оказывает такое же действие и на многомерные распределения.

<< Предыдущий параграф Следующий параграф >>
Оглавление