Главная > Физика > Теория спиноров
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ПРЕДИСЛОВИЕ К РУССКОМУ ПЕРЕВОДУ

Автор издаваемых в русском переводе лекций по теоргя спиноров Э. Картан является творцом общей теории спиноров, основы которой он опубликовал в 1913 г. в своем классическом исследовании по теории представлений простых групп. Теория спиноров — это один из наиболее интересных отделов тензорного исчисления, дающий глубокий анализ природы тензоров метрической геометрии. Книга Картана — первая в мировой литературе, излагающая общую теорию спиноров н-мерных пространств. Написана она элементарно: благодаря тому, что автор базируется в своем изложении на геометрических представлениях и пользуется при исследовании ортогональных групп методом бесконечно малых преобразований, его изложение отличается значительной простотой и наглядностью. Поэтому эта книга вполне доступна для аспирантов и студентов старших курсов физико-математических факультетов уннверснтетов. Благодаря богатству содержащихся в ней идей и методов исследовани» она значительно расширяет кругозор начинающего математика и является прекрасным введением в общую теорию линейных представлений групп Ли. В то же время она будет полезна и для физиков-теоретиков, желающих углубить свои знания в области теории спиноров.

П. Широков

ПРЕДИСЛОВИЕ АВТОРА

В квантовой механике физиками было введено понятие о спиноре. В наиболее общей математической форме спиноры были открыты автором этой книги в 1913 г. в связи с исследованием линейных представлений простых групп. Спиноры дают линейное представление группы вращений пространства и измерений, причем каждый спинор определяется при помощи 2, составляющих или Спиноры четырехмерного пространства входят в знаменитые уравнения Дирака для влек трона, причем четыре волновые функции являются не чем иным, как составляющими спинора. Было опубликовано очень много исследований по общей теории спиноров. Гериаи Вейль и Рихард Брауер недавно опубликовали прекрасный мемуар, который можно рассматривать как основной, хотя многие из полученных результатов были очень кратко указаны в упомянутом выше исследовании. О, Веблен дал очень интересное исследование спиноров с другой точки зрения в неопубликованной курсе, прочитанном в Принстонском университете. Но почти во всех работах спиноры вводятся чисто формально, без интуитивной геометрической интерпретации, и это отсутствие геометрической природы спиноров сделало столь «ложными попытки распространения на общую теорию относительности уравнений Дирака.

Одной из основных целей этой книги является систематическое развитие теории спиноров на основе чисто геометрического определения этих математических объектов. Благодаря этой геометрической основе матрицы, которыми пользуются в квантовой мехаиике, возникают в ходе исследования сами

собой, и выясняется самая основа тех свойств, которыми обладают гиперкомплексные числа Клиффорда-Липшитца в теории представления вращений в пространстве любого числа измерений. Наконец, эта геометрическая основа делает очень простым введение спиноров в римановой геометрии и, в частности, применение к этим геометрическим объектам понятия параллельного переноса. Становятся понятными также и те затруднения, которые встретились в связи с последним вопросом и которые являются непреодолимыми, если пользоваться классическими приемами исследования в римановой геометрии. Эти приемы применимы к векторам и тензорам, которые помимо метрической природы имеют чисто аффинный характер, но они не могут применяться к спинорам, имеющим метрическую, но не аффинную природу.

Книга делится на две части. Первая посвящена общим вопросам теории групп вращений -мерного пространства и линейных представлений групп, теории спиноров пространства трех измерений и исследованию линейных представлений группы - вращений этого пространства. Эти представления, как известно, играют важную роль в квантовой механике. Для их определения использован метод бесконечно малых, который требует минимума предварительных сведений для своего понимания; трансцендентный метод Г. Вейля, основанный на теории характеров, оставлен в стороне, несмотря на его большой интерес.

Вторая часть посвящена теории спиноров в пространстве любого числа измерений и специально в пространстве частного принципа относительности; указаны линейные представления группы Лоренца, а также дана теория спиноров в римановой геометрии.

Эта книга, воспроизводящая с некоторыми изменениями курс, прочитанный в Сорбонне в зимнем семестре 1935/36 г., составлена по запискам, написанным А. Мерсье и использованным автором, который выражает ему свою глубокую благодарность за сотрудничество.

ЭЛИ КАРТАН.

ЧАСТЬ I. СПИНОРЫ ТРЕХМЕРНОГО ПРОСТРАНСТВА ЛИНЕЙНЫЕ ПРЕДСТАВЛЕНИЯ ГРУППЫ ВРАЩЕНИЙ

<< Предыдущий параграф Следующий параграф >>
Оглавление