Главная > Физика > Теоретическая механика. Статика. Динамика точки, Т.1
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ГЛАВА II. КИНЕМАТИКА

Кинематика оформилась как самостоятельная наука сравнительно недавно. Уже Даламбер указал на важность изучения законов движения как такового. Но первый, кто показал необходимость предпослать динамике теорию геометрических свойств движения тел, был Ампер. Эти свойства были представлены в 1838 г. Факультету наук в Париже Понселе. В этом представлении содержались, в частности, и теоремы о непрерывном перемещении твердого тела в пространстве, за исключением понятия мгновенной винтовой оси, которое было введено Шалем. Формулы, дающие вариации координат точек движущегося в пространстве тела, принадлежат Эйлеру (Берлинская Академия, 1750). Кинематика допускает многочисленные геометрические приложения. К ним относится, например, метод Роберваля построения касательных, теория мгновенных центров вращения, введенная Шалем, частный случай которой был дан уже Декартом в связи с задачей о касательной к циклоиде. К ним же относятся установленные Шалем свойства систем прямых, плоскостей и точек, связанные с движением твердого тела и приводящие наиболее простым образом к понятию комплекса прямых первого порядка. В 1862 г. Резаль выпустил курс «Чистой кинематики». С появлением этого курса кинематика окончательно утвердилась в качестве самостоятельной науки.

Мы ограничиваемся здесь изложением только тех понятий, которые необходимы для дальнейшего курса механики. Так, в частности, мы не занимаемся здесь перемещениями твердого тела, положение которого определяется двумя или несколькими параметрами. Эти перемещения были изучены, главным образом, Томсоном и Тэтом, Шёнеманом, Мангеймом, Рибокуром, Кёнигсом.

I. Кинематика точки

36. Определения.

Когда говорят, что тело находится в покое или в движении, то под этим всегда понимают, что этот покой или движение имеет место относительно некоторых других тел. Так, объект, находящийся неподвижно на поверхности Земли, покоится относительно Земли, сама же Земля движется относительно Солнца, и т. д. Другими словами, наблюдают только относительные движения.

Тем не менее представляется удобным в каждом вопросе кинематики выбирать систему осей, которые по определению рассматриваются как абсолютно неподвижные. Тогда движение относительно этих осей называют абсолютным движением.

Но если в кинематике выбор осей, рассматриваемых как неподвижные, является произвольным, то в механике это будет не так. Ниже мы увидим, что с целью возможно большего упрощения исследования явлений природы осями, которые уславливаются считать неподвижными, являются оси, имеющие начало в центре тяжести солнечной системы и направленные на три, так называемые, неподвижные звезды.

Для определения момента времени, в котором происходит какое-нибудь явление, его относят к какому-нибудь определенному моменту, называемому начальным, и задают число, которое измеряет в каких-нибудь единицах (например, в секундах среднего времени) промежуток времени между рассматриваемым и начальным моментами. Этому числу приписывают знак + или — в зависимости от того, наступает ли рассматриваемый момент после или до начального момента. Вследствие этого, когда мы будем говорить о моменте времени буква будет обозначать положительное или отрицательное число секунд.

Рис. 29.

С целью упрощения изучения кинематики сначала изучают движение одной точки, а после этого — движение тел произвольной протяженности.

<< Предыдущий параграф Следующий параграф >>
Оглавление