Главная > Физика > Теория относительности (Эйнштейн А.)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 17. Четырехмерное пространство Минковского

Когда нематематик слышит о «четырехмерном», его охватывает мистическое чувство, подобное чувству, возбуждаемому театральными привидениями. Тем не менее нет более банального утверждения, что окружающий нас мир представляет собой четырехмерный пространственно - временной континуум.

Пространство представляет собой трехмерный континуум. Это значит, что положение (покоящейся) точки можно описать тремя числами (координатами) х, у, z и что около каждой точки имеются сколь угодно близкие «соседние» точки, положение которых может быть описано такими значениями координат (координатами) которые могут быть сколь угодно близки к координатам х, у, z исходной точки. Благодаря последнему свойству мы говорим о «континууме» (непрерывности), а ввиду того, что число координат равно трем — о его «трехмерности».

Аналогично, мир физических явлений, названный Минковским просто «миром», естественно, является четырехмерным в пространственно - временном смысле. В самом деле, он складывается из отдельных событий, каждое из которых описывается четырьмя числами, а именно: тремя пространственными координатами х, у, z и временной координатой — значением времени t. «Мир» в этом смысле является также непрерывным (континуумом); для каждого события имеются сколь угодно близкие «соседние» (происходящие или мыслимые) события, координаты которых сколь угодно мало отличаются от координат первоначально наблюдавшегося события х, у, z, t. Тот факт, что мы обычно не рассматриваем мир в этом смысле как четырехмерный континуум, объясняется тем, что время в дорелятивистской физике играет иную, более самостоятельную по сравнению с пространственными координатами роль. Поэтому и выработалась привычка рассматривать время как самостоятельный континуум. В самом деле, в классической физике время абсолютно, т.е. не зависит от положения и состояния движения системы отсчета. Это находит свое выражение в последнем уравнении преобразования Галилея

Благодаря теории относительности появляется возможность четырехмерной трактовки «мира», так как в этой теории время утрачивает свою самостоятельность, как показывает четвертое уравнение преобразования Лоренца:

Действительно, согласно этому уравнению, разность времен двух событий относительно К, вообще говоря, не обращается в нуль, и тогда, когда разность времен этих событий относительно К исчезает. Чисто пространственному расстоянию двух событий относительно системы отсчета К соответствует расстояние во времени этих же событий относительно К. Однако и не в этом заключается открытие Минковского, важное для формального развития теории относительности. Оно состоит скорее в осознании того, что четырехмерный пространственно - временной континуум теории относительности по своим основным формальным свойствам глубоко родствен трехмерному континууму евклидовой геометрии. Для полного выявления этого родства необходимо вместо обычной временной координаты ввести пропорциональную ей мнимую величину Но тогда законы природы, удовлетворяющие требованиям (специальной) теории относительности, принимают такую математическую форму, в которой временная координата играет точно такую же роль, как и три пространственные координаты. Формально эти четыре координаты совершенно точно соответствуют трем пространственным координатам евклидовой геометрии. Даже нематематику должно быть ясно, что благодаря этому чисто формальному положению теория относительности чрезвычайно выиграла в наглядности и стройности.

Эти краткие указания дают читателю лишь смутное представление о важных мыслях Минковского, без которых общая теория относительности, основные положения которой излагаются ниже, быть может, оставалась бы в зачаточном состоянии. Но более глубокое усвоение этого материала, несомненно, трудного для читателя без математической подготовки, не является необходимым для понимания как специальной, так и общей теории относительности; поэтому мы оставим здесь изложение этого вопроса и снова вернемся к нему лишь на последних страницах этой работы.

<< Предыдущий параграф Следующий параграф >>
Оглавление