Главная > Физика > Физика для углубленного изучения. 2. Электродинамика. Оптика
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 12. Закон Ома для неоднородной цепи

Расчет электрических цепей постоянного тока основан на использовании закона Ома. Для однородного участка цепи применения закона Ома были подробно рассмотрены в предыдущем параграфе. А как найти силу тока в неоднородном участке электрической цепи, на концах которой существует некоторая разность потенциалов и внутри которого имеются скачки потенциалов, например, включен гальванический элемент или аккумулятор?

Контактная разность потенциалов. Рассмотрим сначала неоднородный участок цепи, состоящий из двух последовательно соединенных различных проводников А и В, например, медного и цинкового (рис. 73). Опыт показывает, что между различными проводниками имеется скачок потенциала, который не зависит от тока и существует даже в его отсутствие. Эта контактная разность потенциалов была открыта еще в 1797 г. итальянским физиком А. Вольта, установившим ряд металлов, в котором каждый предыдущий металл при соединении с любым из последующих электризуется положительно: Al, Zn, Sn, Cd, Pb, Sb, Bi, Hg, Fe, Cu, Ag, Au, Pt, Pd.

Рис. 73. Неоднородный участок цепи

Существование контактной разности потенциалов можно продемонстрировать с помощью следующего простого опыта. На стержне электроскопа укрепляют пластину из исследуемого металла (рис. 74).

Рис. 74. Обнаружение контактной разности потенциалов

Ее покрывают тонким слоем изолирующего материала. Сверху кладут пластину из второго исследуемого материала, снабженную изолирующей ручкой, и соединяют эту пластину с землей.

Пластины на некоторое время соединяют проводником. При этом между пластинами возникает контактная разность потенциалов, т. е. образованный ими конденсатор заряжается. Однако существующее в нем напряжение настолько мало, что обнаружить отклонение листочков электроскопа невозможно. Поэтому поступают следующим образом. Верхнюю пластину поднимают, так что емкость образованного пластинами конденсатора уменьшается. Так как заряд на изолированной нижней пластине остается неизменным, то разность потенциалов между ней и землей возрастает во столько раз, во сколько уменьшается емкость. При достаточном раздвижении пластин отклонение листочков электроскопа легко обнаруживается.

Физическая причина возникновения контактной разности потенциалов заключается в различии работы выхода у разных металлов, т. е. минимальной работы, которую нужно совершить, чтобы удалить электрон из металла в вакуум, а также в различии концентрации свободных электронов в них. Величина скачка потенциала зависит от рода металлов, чистоты их поверхностей и от их температуры. Контактная разность потенциалов колеблется от нескольких десятых вольта до единиц вольт.

Если соединить между собой последовательно несколько различных металлов, то возникающая на концах крайних проводников разность потенциалов не зависит от того, какие проводники находятся между ними, т. е. будет такой же, как при непосредственном соединении этих крайних проводников между собой. Подчеркнем, что в отсутствие тока каждый металл остается эквипотенциальным, а скачок потенциала и связанное с ним электрическое поле имеются только в месте контакта.

Ток в неоднородном участке цепи. Подсоединим теперь внешние концы проводников А и В на рис. 73 к источнику постоянного напряжения. Обозначим потенциал левого конца проводника А через а потенциал правого конца проводника В через Потенциалы металлов А и В в месте контакта обозначим через Так как теперь в проводниках идет ток, то, разумеется, Мы пока не знаем, как записать закон Ома для всего рассматриваемого участка цепи, но зато можем записать его для каждого из однородных участков А и В. Так как проводники соединены последовательно, то через них протекает один и тот же ток Предположим, что ток идет слева направо, как показано на рис. 73. Тоща

где — сопротивления участков А и В. Сложим почленно уравнения (1) и перегруппируем слагаемые в левой части следующим образом:

Сумма есть полное сопротивление рассматриваемого участка. Разность потенциалов представляет собой приложенное напряжение Разность есть скачок потенциала в месте контакта металлов, который, как уже отмечалось, не зависит от протекающего тока и определяется только природой металлов и температурой. Значение скачка обозначим через Тоща соотношение (2) можно переписать в виде

Это и есть закон Ома для неоднородного участка цепи.

Отметим, что под напряжением на рассматриваемом участке понимается разность — где — потенциал той точки, от которой течет ток, а — потенциал точки, к которой течет ток. Скачок потенциала в месте контакта определен как , т. е. знак определяется тем, повышает или понижает скачок значение потенциала в цепи в направлении протекания тока: если повышает, если понижает,

Но ведь при рассуждениях мы выбрали направление тока слева направо наугад! А если на самом деле он течет в противоположную сторону? Предположив, что ток течет справа налево, и повторяя буквально все выкладки, мы получим значение силы тока, отличающееся только знаком. Это означает, что, приступая к анализу неоднородного участка цепи, мы можем вообще не задумываться о том, в какую сторону течет ток на самом деле, а задавать ему направление произвольно.

Выбрав направление тока, мы определяем его значение по формуле (3), строго соблюдая сформулированное выше правило знаков для Если в результате ток окажется положительным, то он действительно течет в заданном нами направлении. Если же получится отрицательное значение, то в действительности ток течет в противоположную сторону, а значение его, разумеется, найдено правильно. Ниже мы подробно рассмотрим примеры использования закона Ома для неоднородного участка цепи, иллюстрирующие сформулированное правило знаков.

Если соединить последовательно несколько различных проводников, то, повторяя все приведенные выкладки, легко убедиться, что формула (3) сохраняет свой вид; только теперь под нужно понимать алгебраическую сумму скачков потенциала в контактах, а под — сумму сопротивлений всех проводников.

Замкнутая неоднородная цепь. Рассмотрим теперь замкнутую цепь проводников, составленную из разных металлов. Представим себе, что эта замкнутая цепь получается в результате соединения начала и конца цепочки проводников, т. е. тех точек, к которым

могло быть приложено внешнее напряжение Соединение этих точек в одну означает, что теперь и формула (3) для замкнутой последовательной цепочки принимает вид

где — алгебраическая сумма скачков потенциала между всеми парами соединенных проводников, полное сопротивление замкнутой цепи.

Если контакты между различными металлами находятся при одинаковой температуре, то сумма всех скачков потенциалов будет, очевидно, равна нулю, поскольку скачок потенциала между любыми двумя металлами не зависит от того, что находится между ними.

Электродвижущая сила. При различных температурах контактов в цепи сумма скачков потенциала может быть отличной от нуля, и в цепи пойдет ток, определяемый формулой (4). Сумма скачков потенциала в замкнутой цепи называется электродвижущей силой (ЭДС), а равенство (4) — законом Ома для замкнутой неразветвленной цепи.

Остановимся подробнее на физическом смысле понятия ЭДС. Скачок потенциала в месте контакта двух металлов возникает вследствие различия работы выхода электронов и их концентрации в этих металлах, приводящего к диффузии электронов через контакт. Силы, вызывающие направленный поток электронов, имеют неэлектростатическое (не кулоновское) происхождение. Такие силы неэлектростатического происхождения независимо от их физической природы называют сторонними. Направленный поток электронов через контакт прекращается, когда возникает препятствующее ему электростатическое поле, уравновешивающее действие сторонних сил. Это возникающее электростатическое поле и характеризуется контактной разностью потенциалов.

В рассмотренном случае электродвижущая сила возникает только при различных температурах контактов и называется термоэлектродвижущей силой (термоЭДС).

Закон Ома (4) для замкнутой цепи справедлив не только для термоЭДС, но и для сторонних сил любой природы. Как уже отмечалось, неоднородность цепи может быть обусловлена включением в нее гальванического элемента, аккумулятора, генератора постоянного тока и т. д. Если рассматриваемая цепь содержит несколько ЭДС, то в формуле (4) под нужно понимать алгебраическую сумму всех этих ЭДС, причем знак каждой из них определяется в соответствии со сформулированным выше правилом.

Ниже будет показано, что ЭДС характеризует работу сторонних сил, совершаемую при перемещении зарядов. Другими словами, ЭДС характеризует превращение энергии других видов в электрическую.

ЭДС в разных источниках. В противоположность контактам проводников первого рода (металлы, полупроводники), в которых не происходит никаких химических изменений при прохождении электрического тока, в контактах металлов с электролитами (например, цинка с серной кислотой) происходят химические реакции. Как мы видели, в замкнутой цепи из различных проводников первого рода при одинаковой их температуре не возникает ЭДС. Если же составить замкнутую цепь из проводников первого и второго рода, то в ней возникает отличная от нуля ЭДС даже при постоянной температуре.

Рис. 75. Элемент Даниеля и внешний вид сухого элемента Лекланше

Такого рода комбинация проводников первого рода и электролитов представляет собой химический источник тока «сухой» гальванический элемент, или аккумулятор (рис. 75), в котором электрический ток поддерживается за счет химических реакций между электродами и электролитом. Например, в гальваническом элементе, состоящем из пластин цинка и меди, погруженных в раствор серной кислоты, происходит растворение цинкового электрода в кислоте. В аккумуляторах используются обратимые химические реакции: расходуемый при работе электрод восстанавливается в процессе зарядки. Химические источники тока обеспечивают ЭДС до 2 В.

В генераторах, применяемых на электростанциях для превращения механической энергии в электрическую, сторонние силы по своей природе — это силы, действующие на движущиеся в магнитном поле заряды.

Внутреннее сопротивление источника тока. В любой реальной электрической цепи всегда можно выделить участок, который служит для поддержания тока (источник тока), а остальную часть рассматривать как «нагрузку». В источнике тока обязательно действуют сторонние силы, поэтому в общем случае он характеризуется электродвижущей силой и сопротивлением которое называется внутренним сопротивлением источника. Нагрузка тоже может содержать ЭДС (например, электродвигатель), однако в простейшем случае в нагрузке никакие сторонние силы не действуют, и она характеризуется только сопротивлением.

Простейшая замкнутая цепь. Рассмотрим замкнутую электрическую цепь, содержащую источник тока с ЭДС и внутренним сопротивлением и нагрузку, характеризуемую только сопротивлением

(рис. 76). Сопротивление соединительных проводов будем считать равным нулю. Применяя к такой цепи формулу (4), в знаменателе которой стоит полное сопротивление цепи, запишем ее в виде

где через обозначено сопротивление нагрузки. Идеальный вольтметр, подключенный к сопротивлению т. е. к зажимам (полюсам) работающего источника тока, показывает напряжение как это следует из закона Ома для однородного участка цепи — в данном случае для сопротивления нагрузки. Подставляя сюда силу тока из (5), это напряжение можно выразить через параметры цепи

Рис. 76. Простейшая замкнутая цепь с источником тока

Из (6) видно, что напряжение на зажимах работающего источника всегда меньше его ЭДС. Оно тем ближе к чем больше сопротивление нагрузки . В пределе (точнее когда т. е. когда можно пренебречь сопротивлением источника по сравнению с сопротивлением нагрузки) из (6) следует, что напряжение на зажимах разомкнутого источника равно его ЭДС.

Противоположный предельный случай (точнее, когда т. е. когда сопротивление нагрузки много меньше внутреннего) соответствует так называемому короткому замыканию источника тока. В этом случае а

— ток короткого замыкания, т. е. максимальный ток, который можно получить от данного источника.

Из формулы (5) следует, что напряжение на зажимах источника можно записать в виде

Произведение представляет собой напряжение на сопротивлении т. е. напряжение внутри источника тока. Поэтому формула (8) означает, что ЭДС равна сумме напряжений на внешнем и внутреннем участках замкнутой цепи.

Составная внешняя цепь. Как правило, внешняя цепь состоит из нескольких сопротивлений, по-разному соединенных между собой. Все сказанное выше остается справедливым, если под понимать эквивалентное сопротивление всей внешней цепи. Приведенные соотношения позволяют легко рассчитывать такие цепи или проводить их качественный анализ.

Рассмотрим следующие примеры.

1. Требуется определить, как изменятся (увеличатся или уменьшатся) показания всех идеальных вольтметров в цепи, показанной на рис. 77, если, например, уменьшить сопротивление переменного резистора.

При уменьшении сила тока в цепи возрастает. В соответствии с законом Ома для участка цепи напряжение на сопротивлении , возрастает, а напряжение на зажимах источника тока, как следует из формулы (8), уменьшается.

Рис. 77. К исследованию изменений показаний вольтметров

Рис. 78. К исследованию изменений показаний амперметров

Применять закон Ома для участка цепи к сопротивлению затруднительно, поскольку убывает, а ток в цепи возрастает. Поэтому воспользуемся тем, что откуда сразу ясно, что напряжение на резисторе убывает, причем в большей мере, чем

1. Требуется определить, как изменятся показания всех идеальных амперметров в схеме, показанной на рис. 78, при уменьшении сопротивления Очевидно, что при уменьшении полное сопротивление нагрузки уменьшается, и ток I, показываемый амперметром А, возрастает. При этом, как следует из (8), напряжение на параллельно соединенных сопротивлениях и убывает. Поэтому ток показываемый амперметром уменьшается. Сказать сразу, что произойдет с показанием амперметра затруднительно. Однако из равенства немедленно следует, что увеличивается, причем в большей мере, чем I.

• Что такое контактная разность потенциалов? Как на опыте можно убедиться в ее существовании?

• Покажите, как с помощью закона Ома для однородного участка цепи можно получить формулу (3).

• Поясните правило знаков, которым следует руководствоваться при использовании формулы (3).

• Что такое электродвижущая сила? Поясните физический смысл понятия ЭДС на примере цепи из разных металлов. Что такое сторонние силы?

• Сформулируйте закон Ома для замкнутой неразветвленной цепи.

• Какими причинами объясняется ЭДС в цепи из разных металлов или полупроводников, в химических источниках тока, в электрических генераторах?

• Выделите основные части любой реальной замкнутой цепи. Какими параметрами они характеризуются?

• Как связано напряжение на включенном источнике с его ЭДС? От чего зависит напряжение внутри источника?

Напряжение на источнике тока. Вернемся к формуле (8). Она была получена как следствие закона Ома для замкнутой цепи, выражаемого формулой (5).

Рис. 79. Источник тока как неоднородный участок цепи (в) и компенсационный метод измерения ЭДС (б)

Рассчитаем еще раз ток через источник, рассматривая его как неоднородный участок цепи (рис. 79а). Используя формулу (3), в соответствии с приведенным выше правилом знаков имеем

Нетрудно видеть, что напряжение фигурирующее в формуле (8), равно — Поэтому соотношение (9) фактически совпадает с (8). Однако при таком выводе этой формулы не использовалось предположение, что ток создается только этим источником (т. е. что Поэтому формула (8), как и (9),

фактически справедлива при любом соотношении между потенциалами характеризующими напряжение на источнике тока.

Измерение ЭДС. Определение ЭДС какого-либо источника на опыте обычно производится так называемым компенсационным методом, когда неизвестная ЭДС сравнивается с хорошо известной ЭДС другого, эталонного источника. Для этого используется схема, показанная на рис. 79б. Батарея, ЭДС которой заведомо больше как ЭДС эталонного источника 0, так и измеряемой замыкается на внешнее сопротивление . С помощью переключателя К к некоторой части этого сопротивления можно подключить либо эталонный источник, либо измеряемый. Полярность включения элементов показана на рис. 79б.

Подключим сначала эталонный источник с ЭДС и подберем сопротивление таким образом, чтобы ток через гальванометр, а следовательно, и через эталонный источник обратился в нуль. Запомним значение сопротивления при котором это произойдет. Затем повторим то же самое, подключая источник с неизвестной и подберем значение сопротивления при котором отсутствует ток через гальванометр.

Из формулы (9) следует, что ток через участок цепи, содержащий гальванометр и один из подключаемых элементов, отсутствует, когда напряжение между точками А и С пропорционально соответствующему значению сопротивления или Это значит, что для отношения справедливо

откуда Достоинством компенсационного метода является то, что для определения неизвестного источника не требуется знать ни его внутреннего сопротивления, ни характеристик вспомогательного источника, подключаемого к точкам А и В магазина сопротивлений. Важно и то, что факт отсутствия тока через гальванометр может быть установлен с большей точностью, чем измерение любого отличного от нуля значения силы тока.

• Объясните, почему напряжение фигурирующее в формуле (8), действительно равно а не

В чем заключаются достоинства компенсационного метода измерения ЭДС?

<< Предыдущий параграф Следующий параграф >>
Оглавление