Главная > Физика > Физика для углубленного изучения. 2. Электродинамика. Оптика
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 3. Теорема Гаусса

Закон взаимодействия электрических зарядов — закон Кулона — можно сформулировать иначе, в виде так называемой теоремы Гаусса. Теорема Гаусса получается как следствие закона Кулона и принципа суперпозиции. Доказательство основывается на обратной пропорциональности силы взаимодействия двух точечных зарядов квадрату расстояния между ними. Поэтому теорема Гаусса применима к любому физическому полю, где действует закон обратных квадратов и принцип суперпозиции, например к гравитационному полю.

Рис. 9. Линии напряженности электрического поля точечного заряда, пересекающие замкнутую поверхность X

Для того чтобы сформулировать теорему Гаусса, вернемся к картине силовых линий электрического поля неподвижного точечного заряда. Силовые линии уединенного точечного заряда представляют собой симметрично расположенные радиальные прямые (рис. 7). Можно провести любое число таких линий. Обозначим полное их число через Тогда густота силовых линий на расстоянии от заряда, т. е. число линий, пересекающих единицу поверхности сферы радиуса равна Сравнивая это соотношение с выражением для напряженности поля точечного заряда (4), видим, что густота линий пропорциональна напряженности поля. Мы можем сделать эти величины численно равными, надлежащим образом выбрав полное число силовых линий N:

откуда

Таким образом, поверхность сферы любого радиуса, охватывающей точечный заряд пересекает одно и то же число силовых линий. Это значит, что силовые линии непрерывны: в промежутке между любыми двумя концентрическими сферами разных радиусов ни одна из линий не обрывается и не добавляется ни одной новой. Поскольку силовые линии непрерывны, то такое же число силовых линий пересекает любую замкнутую поверхность (рис. 9), охватывающую заряд

Силовые линии имеют направление. В случае положительного заряда они выходят наружу из окружающей заряд замкнутой поверхности, как показано на рис. 9. В случае отрицательного заряда они входят внутрь поверхности. Если число выходящих линий считать положительным, а входящих — отрицательным, то в формуле (8) можно опустить знак модуля у заряда и записать ее в виде

Поток напряженности. Введем теперь понятие потока вектора напряженности поля через поверхность. Произвольное поле можно мысленно разбить на малые области, в которых напряженность меняется по модулю и направлению столь мало, что в пределах этой области поле можно считать однородным. В каждой такой области силовые линии представляют собой параллельные прямые и имеют постоянную густоту.

Рис. 10. К определению потока вектора напряженности поля через площадку

Рассмотрим, какое число силовых линий пронизывает малую площадку направление нормали к которой образует угол а с направлением линий напряженности (рис. 10). Пусть — проекция на плоскость, перпендикулярную силовым линиям. Так как число линий, пересекающих одинаково, а густота линий, согласно принятому условию, равна модулю напряженности поля Е, то

Величина а представляет собой проекцию вектора Е на направление нормали к площадке

Поэтому число силовых линий пересекающих площадку равно

Произведение носит название потока напряженности поля через поверхность Формула (10) показывает, что поток вектора Е через поверхность равен числу силовых линий, пересекающих эту поверхность. Отметим, что поток вектора напряженности, как и число проходящих через поверхность силовых линий, есть скаляр.

Рис. 11. Поток вектора напряженности Е через площадку

Зависимость потока от ориентации площадки относительно силовых линий иллюстрируется рис.

Поток напряженности поля через произвольную поверхность представляет собой сумму потоков через элементарные площадки, на которые можно разбить эту поверхность. В силу соотношений (9) и (10) можно утверждать, что поток напряженности поля точечного заряда через любую охватывающую заряд замкнутую поверхность 2 (см. рис. 9), как число выходящих из этой поверхности силовых линий равен При этом вектор нормали к элементарным площадкам замкнутой поверхности следует направлять наружу. Если заряд внутри поверхности отрицателен, то силовые линии входят внутрь этой поверхности и связанный с зарядом поток вектора напряженности поля также отрицателен.

Если внутри замкнутой поверхности находится несколько зарядов, то в соответствии с принципом суперпозиции будут складываться потоки напряженностей их полей. Полный поток будет равен где под следует понимать алгебраическую сумму всех зарядов, находящихся внутри поверхности.

Если внутри замкнутой поверхности электрических зарядов нет или их алгебраическая сумма равна нулю, то полный поток напряженности поля через эту поверхность равен нулю: сколько силовых линий входит в объем, ограниченный поверхностью, столько же и выходит наружу.

Теперь можно окончательно сформулировать теорему Гаусса: поток вектора напряженности электрического поля Е в вакууме через любую замкнутую поверхность пропорционален полному заряду находящемуся внутри этой поверхности. Математически теорема Гаусса выражается той же формулой (9), где под понимается алгебраическая сумма зарядов. В абсолютной электростатической

системе единиц СГСЭ коэффициент и теорема Гаусса записывается в виде

В СИ и поток напряженности через замкнутую поверхность выражается формулой

Теорема Гаусса широко используется в электростатике. В некоторых случаях с ее помощью легко рассчитываются поля, создаваемые симметрично расположенными зарядами.

Поля симметричных источников. Применим теорему Гаусса для расчета напряженности электрического поля равномерно заряженного по поверхности шара радиуса . Будем для определенности считать его заряд положительным. Распределение зарядов, создающих поле, обладает сферической симметрией. Поэтому такой же симметрией обладает и поле. Силовые линии такого поля направлены по радиусам, а модуль напряженности одинаков во всех точках, равноудаленных от центра шара.

Для того чтобы найти напряженность поля на расстоянии от центра шара, проведем мысленно концентрическую с шаром сферическую поверхность радиуса Поскольку во всех точках этой сферы напряженность поля направлена перпендикулярно ее поверхности и одинакова по модулю, то поток напряженности просто равен произведению напряженности поля на площадь поверхности сферы:

Но эту величину можно выразить и с помощью теоремы Гаусса. Если нас интересует поле вне шара, т. е. при то, например, в СИ и, сравнивая с (13), находим

В системе единиц СГСЭ, очевидно,

Таким образом, снаружи шара напряженность поля такая же, как у поля точечного заряда помещенного в центр шара. Если же интересоваться полем внутри шара, т. е. при то так как весь распределенный по поверхности шара заряд находится вне мысленно проведенной нами сферы. Поэтому поле внутри шара отсутствует:

Аналогично с помощью теоремы Гаусса можно рассчитать электростатическое поле, создаваемое бесконечной заряженной

плоскостью с плотностью постоянной во всех точках плоскости. По соображениям симметрии можно считать, что силовые линии перпендикулярны плоскости, направлены от нее в обе стороны и имеют всюду одинаковую густоту. Действительно, если бы густота силовых линий в разных точках была различной, то перемещение заряженной плоскости вдоль самой себя приводило бы к изменению поля в этих точках, что противоречит симметрии системы — такой сдвиг не должен изменять поле. Другими словами, поле бесконечной равномерно заряженной плоскости является однородным.

В качестве замкнутой поверхности для применения теоремы Гаусса выберем поверхность цилиндра, построенного следующим образом: образующая цилиндра параллельна силовым линиям, а основания имеют площади параллельны заряженной плоскости и лежат по разные стороны от нее (рис. 12). Поток напряженности поля через боковую поверхность равен нулю, поэтому полный поток через замкнутую поверхность равен сумме потоков через основания цилиндра:

Рис. 12. К вычислению напряженности поля равномерно заряженной плоскости

По теореме Гаусса этот же поток определяется зарядом той части плоскости, которая лежит внутри цилиндра, и в СИ равен Сравнивая эти выражения для потока, находим

В системе СГСЭ напряженность поля равномерно заряженной бесконечной плоскости дается формулой

Для равномерно заряженной пластины конечных размеров полученные выражения приближенно справедливы в области, находящейся достаточно далеко от краев пластины и не слишком далеко от ее поверхности. Вблизи краев пластины поле уже не будет однородным и его силовые линии искривляются. На очень больших по сравнению с размерами пластины расстояниях поле убывает с расстоянием так же, как поле точечного заряда.

В качестве других примеров полей, создаваемых симметрично распределенными источниками, можно привести поле равномерно заряженной по длине бесконечной прямолинейной нити, поле равномерно заряженного бесконечного кругового цилиндра, поле шара,

равномерно заряженного по объему, и т. п. Теорема Гаусса позволяет во всех этих случаях легко рассчитывать напряженность поля.

Теорема Гаусса дает связь между полем и его источниками, в некотором смысле обратную той, что дает закон Кулона, который позволяет определить электрическое поле по заданным зарядам. С помощью теоремы Гаусса можно определить суммарный заряд в любой области пространства, в которой известно распределение электрического поля.

• В чем различие концепций дальнодействия и близкодействия при описании взаимодействия электрических зарядов? В какой мере эти концепции можно применить к гравитационному взаимодействию?

• Что такое напряженность электрического поля? Что имеют в виду, когда ее называют силовой характеристикой электрического поля?

• Каким образом по картине силовых линий можно судить о направлении и модуле напряженности поля в некоторой точке?

• Могут ли силовые линии электрического поля пересекаться? Аргументируйте свой ответ.

• Нарисуйте качественную картину силовых линий электростатического поля двух зарядов таких, что .

• Поток напряженности электрического поля через замкнутую поверхность выражается разными формулами (11) и (12) в системах единиц ГСЭ и в СИ. Как это увязать с геометрическим смыслом потока, определяемого числом силовых линйй, пересекающих поверхность?

• Как использовать теорему Гаусса для нахождения напряженности электрического поля при симметричном распределении создающих его зарядов?

• Как применить формулы (14) и (15) к вычислению напряженности поля шара с отрицательным зарядом?

Теорема Гаусса и геометрия физического пространства. Посмотрим на доказательство теоремы Гаусса с несколько иной точки зрения. Вернемся к формуле (7), из которой был сделан вывод о том, что через любую окружающую заряд сферическую поверхность проходит одно и то же число силовых линий. Этот вывод связан с тем, что происходит сокращение в знаменателях обеих частей равенства.

В правой части возникло из-за того, что сила взаимодействия зарядов, описываемая законом Кулона, обратно пропорциональна квадрату расстояния между зарядами. В левой части появление связано с геометрией: площадь поверхности сферы пропорциональна квадрату ее радиуса.

Пропорциональность площади поверхности квадрату линейных размеров — это отличительная черта евклидовой геометрии в трехмерном пространстве. Действительно, пропорциональность площадей именно квадратам линейных размеров, а не какой-либо иной целой степени, характерно для пространства

трех измерений. То, что этот показатель степени равен точно двум, а не отличается от двойки пусть даже на ничтожно малую величину, свидетельствует о неискривленности этого трехмерного пространства, т. е. о том, что его геометрия именно евклидова.

Таким образом, теорема Гаусса — это проявление свойств физического пространства в фундаментальном законе взаимодействия электрических зарядов.

Идея о тесной связи фундаментальных законов физики со свойствами пространства высказывалась многими выдающимися умами еще задолго до установления самих этих законов. Так, И. Кант за три десятилетия до открытия закона Кулона писал о свойствах пространства: «Трехмерность происходит, по-видимому, оттого, что субстанции в существующем мире действуют одна на другую таким образом, что сила действия обратно пропорциональна квадрату расстояния».

Закон Кулона и теорема Гаусса фактически представляют один и тот же закон природы, выраженный в различных формах. Закон Кулона отражает концепцию дальнодействия, в то время как теорема Гаусса исходит из представления о силовом поле, заполняющем пространство, т. е. из концепции близкодействия. В электростатике источником силового поля является заряд, и связанная с источником характеристика поля — поток напряженности — не может измениться в пустом пространстве, где нет других зарядов. Поскольку поток можно наглядно представлять себе как совокупность силовых линий поля, то неизменность потока проявляется в непрерывности этих линий.

Теорема Гаусса, основанная на обратной пропорциональности взаимодействия квадрату расстояния и на принципе суперпозиции (аддитивности взаимодействия), применима к любому физическому полю, в котором действует закон обратных квадратов. В частности, она справедлива и для гравитационного поля. Ясно, что это не просто случайное совпадение, а отражение того, что и электрическое, и гравитационное взаимодействия разыгрываются в трехмерном евклидовом физическом пространстве.

• На какой особенности закона взаимодействия электрических зарядов основана теорема Гаусса?

• Докажите, основываясь на теореме Гаусса, что напряженность электрического поля точечного заряда обратно пропорциональна квадрату расстояния. Какие свойства симметрии пространства используются в этом доказательстве?

• Каким образом геометрия физического пространства отражается в законе Кулона и теореме Гаусса? Какая особенность этих законов свидетельствует об евклидовом характере геометрии и трехмерности физического пространства?

<< Предыдущий параграф Следующий параграф >>
Оглавление