Главная > Физика > Физика для углубленного изучения. 3. Строение и свойства вещества
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 4. Релятивистская динамика

Теория относительности требует пересмотра и уточнения законов механики. Как мы видели, уравнения классической динамики (второй закон Ньютона) удовлетворяют принципу относительности в отношении преобразований Галилея. Но ведь преобразования Галилея должны быть заменены преобразованиями Лоренца! Поэтому уравнения динамики следует изменить так, чтобы они оставались неизменными при переходе от одной инерциальной системы отсчета к другой согласно преобразованиям Лоренца. При малых скоростях уравнения релятивистской динамики должны переходить в классические, ибо в этой области их справедливость подтверждается на опыте.

Импульс и энергия. В теории относительности, как и в классической механике, для замкнутой физической системы сохраняются импульс и энергия Е, однако релятивистские выражения для них отличаются от соответствующих классических:

здесь — масса частицы. Это масса в той системе отсчета, где частица покоится. Часто ее называют массой покоя частицы. Она совпадает с массой частицы в нерелятивистской механике.

Можно показать, что выражаемая формулами (1) зависимость импульса и энергии частицы от ее скорости в теории относительности с неизбежностью следует из релятивистского эффекта замедления времени в движущейся системе отсчета. Это будет сделано ниже.

Релятивистские энергия и импульс (1) удовлетворяют уравнениям, аналогичным соответствующим уравнениям классической механики:

Релятивистская масса. Иногда коэффициент пропорциональности в (1) между скоростью частицы и ее импульсом

называют релятивистской массой частицы. С ее помощью выражения (1) для импульса и энергии частицы можно записать в компактном виде

Если релятивистской частице, т. е. частице, движущейся со скоростью, близкой к скорости света, сообщить дополнительную энергию, чтобы увеличить ее импульс, то скорость ее при этом увеличится очень незначительно. Можно сказать, что энергия частицы и ее импульс увеличиваются теперь за счет роста ее релятивистской массы. Этот эффект наблюдается в работе ускорителей заряженных частиц высоких энергий и служит наиболее убедительным экспериментальным подтверждением теории относительности.

Энергия покоя. Самое замечательное в формуле заключается в том, что покоящееся тело обладает энергией: полагая в получаем

Энергию называют энергией покоя.

Кинетическая энергия. Кинетическая энергия частицы в некоторой системе отсчета определяется как разность между ее полной энергией и энергией покоя С помощью (1) имеем

Если скорость частицы мала по сравнению со скоростью света, формула (6) переходит в обычное выражение для кинетической энергии частицы в нерелятивистской физике.

Различие между классическим и релятивистским выражениями для кинетической энергии становится особенно существенным, когда скорость частицы приближается к скорости света. При релятивистская кинетическая энергия (6) неограниченно возрастает: частица, обладающая отличной от нуля массой покоя и

Рис. 10. Зависимость кинетической энергии тела от скорости

движущаяся со скоростью света, должна была бы иметь бесконечную кинетическую энергию. Зависимость кинетической энергии от скорости частицы показана на рис. 10.

Пропорциональность массы и энергии. Из формулы (6) следует, что при разгоне тела приращение кинетической энергии сопровождается пропорциональным приращением его релятивистской массы. Вспомним, что важнейшим свойством энергии является ее способность превращаться из одной формы в другую в эквивалентных количествах при различных физических процессах — именно в этом заключается содержание закона сохранения энергии. Поэтому естественно ожидать, что возрастание релятивистской массы тела будет происходить не только при сообщении ему кинетической энергии, но и при любом другом увеличении энергии тела независимо от конкретного вида энергии. Отсюда можно сделать фундаментальное заключение о том, что полная энергия тела пропорциональна его релятивистской массе независимо от того, из каких конкретных видов энергии она состоит.

Поясним сказанное на следующем простом примере. Рассмотрим неупругое столкновение двух одинаковых тел, движущихся навстречу друг другу с одинаковыми скоростями, так что в результате столкновения образуется одно тело, которое покоится (рис. 11а).

Рис. 11. Неупругое столкновение, наблюдаемое в разных системах отсчета

Пусть скорость каждого из тел до столкновения равна а масса покоя Массу покоя образовавшегося тела обозначим через Теперь рассмотрим это же столкновение с точки зрения наблюдателя в другой системе отсчета К, движущейся относительно исходной системы К влево (рис. 11б) с малой (нерелятивистской) скоростью —и.

Так как то для преобразования скорости при переходе от К к К можно использовать классический закон сложения скоростей. Закон сохранения импульса требует, чтобы полный импульс тел до столкновения был равен импульсу образовавшегося тела. До столкновения полный импульс системы равен где релятивистская масса сталкивающихся тел; после столкновения он равен ибо вследствие массу образовавшегося тела и в К можно считать равной массе покоя. Таким образом, из закона сохранения импульса следует, что масса покоя образовавшегося в результате неупругого соударения тела равна сумме релятивистских масс сталкивающихся частиц, т. е. она больше, чем сумма масс покоя исходных частиц:

Рассмотренный пример неупругого соударения двух тел, при котором происходит превращение кинетической энергии во внутреннюю энергию, показывает, что увеличение внутренней энергии тела также сопровождается пропорциональным увеличением массы. Этот вывод должен быть распространен на все виды энергии: нагретое тело имеет большую массу, чем холодное, сжатая пружина имеет большую массу, чем несжатая, и т. п.

Эквивалентность энергии и массы. Закон пропорциональности массы и энергии является одним из самых замечательных выводов теории относительности. Взаимосвязь массы и энергии заслуживает подробного обсуждения.

В классической механике масса тела есть физическая величина, являющаяся количественной характеристикой его инертных свойств, т. е. мера инертности. Это инертная масса. С другой стороны, масса характеризует способность тела создавать поле тяготения и испытывать силу в поле тяготения. Это тяготеющая, или гравитационная, масса. Инертность и способность к гравитационным взаимодействиям представляют собой совершенно различные проявления свойств материи. Однако то, что меры этих различных проявлений обозначаются одним и тем же словом, не случайно, а обусловлено тем, что оба свойства всегда существуют совместно и всегда друг другу пропорциональны, так что меры этих свойств можно выражать одним и тем же числом при надлежащем выборе единиц измерения.

Равенство инертной и гравитационной масс есть экспериментальный факт, подтвержденный с огромной степенью точности в опытах Этвеша, Дикке и др. Как же следует отвечать на вопрос: есть ли масса инертная и масса гравитационная одно и то же или нет? По своим проявлениям они различны, но их числовые характеристики пропорциональны друг другу. Такое положение вещей характеризуют словом «эквивалентность».

Аналогичный вопрос возникает в связи с понятиями массы покоя и энергии покоя в теории относительности. Проявления свойств материи, соответствующих массе и энергии, бесспорно различны. Но теория относительности утверждает, что эти свойства неразрывно связаны, пропорциональны друг другу. Поэтому в этом смысле можно говорить об эквивалентности массы покоя и энергии покоя. Выражающее эту эквивалентность соотношение (5) называется формулой Эйнштейна. Она означает, что всякое изменение энергии системы сопровождается эквивалентным изменением ее массы. Это относится к изменениям различных видов внутренней энергии, при которых масса покоя меняется.

О законе сохранения массы. Опыт показывает нам, что в громадном большинстве физических процессов, в которых изменяется внутренняя энергия, масса покоя остается неизменной. Как это согласовать с законом пропорциональности массы и энергии? Дело в том, что обычно подавляющая часть внутренней энергии (и соответствующей ей массы покоя) в превращениях не участвует и в результате оказывается, что определяемая из взвешивания масса практически сохраняется, несмотря на то, что тело выделяет или поглощает энергию. Это объясняется просто недостаточной точностью взвешивания. Для иллюстрации рассмотрим несколько численных примеров.

1. Энергия, высвобождающаяся при сгорании нефти, при взрыве динамита и при других химических превращениях, представляется нам в масштабах повседневного опыта громадной. Однако если перевести ее величину на язык эквивалентной массы, то окажется, что эта масса не составляет и полной величины массы покоя. Например, при соединении водорода с кислорода выделяется около энергии. Масса покоя образовавшейся воды на меньше массы исходных веществ. Такое изменение массы слишком мало для того, чтобы его можно было обнаружить с помощью современных приборов.

2. При неупругом столкновении двух частиц по разогнанных навстречу друг другу до скорости добавочная масса покоя слипшейся пары составляет

(При такой скорости можно пользоваться нерелятивистским выражением для кинетической энергии.) Эта величина намного меньше погрешности, с которой может быть измерена масса

Масса покоя и квантовые закономерности. Естественно задать вопрос: почему при обычных условиях подавляющая часть энергии находится в совершенно пассивном состоянии и в превращениях не участвует? На этот вопрос теория относительности не может дать ответа. Ответ следует искать в области квантовых закономерностей,

одной из характерных особенностей которых является существование устойчивых состояний с дискретными уровнями энергии.

Для элементарных частиц энергия, соответствующая массе покоя, либо превращается в активную форму (излучение) целиком, либо вовсе не превращается. Примером может служить превращение пары электрон—позитрон в гамма-излучение.

У атомов подавляющая часть массы находится в форме массы покоя элементарных частиц, которая в химических реакциях не изменяется. Даже в ядерных реакциях энергия, соответствующая массе покоя тяжелых частиц (нуклонов), входящих в состав ядер, остается пассивной. Но здесь активная часть энергии, т. е. энергия взаимодействия нуклонов, составляет уже заметную долю энергии покоя.

Таким образом, экспериментальное подтверждение релятивистского закона пропорциональности энергии покоя и массы покоя следует искать в мире физики элементарных частиц и ядерной физики. Например, в ядерных реакциях, идущих с выделением энергии, масса покоя конечных продуктов меньше массы покоя ядер, вступающих в реакцию. Соответствующая этому изменению массы энергия с хорошей точностью совпадает с измеренной на опыте кинетической энергией образующихся частиц.

• Как импульс и энергия частицы зависят от ее скорости в релятивистской механике?

• Какая физическая величина называется массой частицы? Что такое масса покоя? Что такое релятивистская масса?

• Покажите, что релятивистское выражение (6) для кинетической энергии переходит в обычное классическое при .

• Что такое энергия покоя? В чем заключается принципиальное отличие релятивистского выражения для энергии тела от соответствующего классического?

• В каких физических явлениях обнаруживает себя энергия покоя?

• Как понимать утверждение об эквивалентности массы и энергии? Приведите примеры проявления этой эквивалентности.

• Сохраняется ли масса вещества при химических превращениях?

Вывод выражения для импульса. Дадим обоснование формул (1), приведенных выше без доказательства, анализируя простой мысленный опыт. Для выяснения зависимости импульса частицы от скорости рассмотрим картину абсолютно упругого «скользящего» столкновения двух одинаковых частиц. В системе центра масс это столкновение имеет вид, показанный на рис. 12а: до столкновения частицы У и 2 движутся навстречу друг другу с одинаковыми по модулю скоростями, после столкновения частицы разлетаются в противоположные стороны с такими же по модулю скоростями, как и до столкновения. Другими словами,

при столкновении происходит только поворот векторов скоростей каждой из частиц на один и тот же небольшой угол

Как будет выглядеть это же столкновение в других системах отсчета? Направим ось х вдоль биссектрисы угла и введем систему отсчета К, движущуюся вдоль оси х относительно системы центра масс со скоростью, равной х-составляющей скорости частицы 1. В этой системе отсчета картина столкновения выгладит так, как показано на рис. 12б: частица 1 движется параллельно оси у, изменив при столкновении направление скорости и импульса на противоположное.

Сохранение х-составляющей полного импульса системы частиц при столкновении выражается соотношением

где — импульсы частиц после столкновения. Так как (рис. 126), требование сохранения импульса означает равенство х-составляющих импульса частиц 1 и 2 в системе отсчета К:

Теперь, наряду с К, введем в рассмотрение систему отсчета К, которая движется относительно системы центра масс со скоростью, равной х-составляющей скорости частицы 2.

Рис. 12. К выводу зависимости массы тела от скорости

В этой системе частица 2 до и после столкновения движется параллельно оси у (рис. 12в). Применяя закон сохранения импульса, убеждаемся, что в этой системе отсчета, как и в системе К, имеет место равенство -составляющих импульса частиц

Но из симметрии картин столкновения на рис. 12б,в легко сделать вывод о том, что модуль импульса частицы 1 в системе К равен модулю импульса частицы 2 в системе отсчета поэтому

Сопоставляя два последних равенства, находим т. е. у-составляющая импульса частицы 1 одинакова в системах отсчета К и К. Точно так же находим Другими словами, у-составляющая импульса любой частицы, перпендикулярная направлению относительной скорости систем отсчета, одинакова в этих системах. В этом и заключается главный вывод из рассмотренного мысленного эксперимента.

Но у-составляющая скорости частицы имеет различное значение в системах отсчета К и К. Согласно формулам преобразования скорости

где есть скорость системы К относительно К. Таким образом, в К у-составляющая скорости частицы 1 меньше, чем в К.

Это уменьшение у-составляющей скорости частицы 1 при переходе от К к К непосредственно связано с релятивистским преобразованием времени: одинаковое в К и К расстояние между штриховыми линиями А и В (рис. 12б, в) частица 1 в системе К проходит за большее время, чем в К. Если в К это время равно (собственное время, так как оба события — пересечение штрихов А и В — происходят в К при одном и том же значении координаты то в системе К это время больше и равно

Вспоминая теперь, что у-составляющая импульса частицы 1 одинакова в системах К и К, мы видим, что в системе К, где у-составляющая скорости частицы меньше, этой частице нужно приписать как бы ббльшую массу, если под массой понимать, как и в нерелятивистской физике, коэффициент пропорциональности между скоростью и импульсом. Как уже отмечалось, этот коэффициент называют иногда релятивистской массой. Релятивистская масса частицы зависит от системы отсчета, т. е. является величиной относительной. В той системе отсчета, где скорость частицы много меньше скорости света, для связи между скоростью и импульсом частицы справедливо обычное классическое выражение где есть масса частицы в том смысле, как она понимается в нерелятивистской физике (масса покоя).

Будем считать, что в рассматриваемом нами «скользящем» столкновении скорость частицы 1 в системе К много меньше скорости света, т. е. ее масса в системе К есть масса покоя Написав аналогичное выражение для у-составляющей импульса в системе К

где коэффициент пропорциональности, т. е. релятивистская масса частицы, обозначен буквой видим, что равенство

будет обеспечено, если коэффициенту в системе отсчета К приписать значение, даваемое формулой (3):

т. е. уменьшение поперечной составляющей скорости частицы при переходе от системы К к должно быть скомпенсировано возрастанием коэффициента пропорциональности между скоростью и импульсом. Из приведенного вывода ясно, что это возрастание релятивистской массы, вызванное движением системы отсчета, действительно связано с релятивистским кинематическим эффектом замедления времени.

Возвращаясь к рис. 12, вспомним, что был рассмотрен случай скользящего столкновения, когда составляющая скорости частицы вдоль оси у была много меньше составляющей ее скорости вдоль оси х. В этом предельном случае входящая в полученную формулу относительная скорость систем К и к практически совпадает со скоростью частицы 1 в системе К. Поэтому найденное значение коэффициента пропорциональности между у-составляющими векторов скорости и импульса справедливо и для самих векторов. Таким образом, соотношение (3) доказано.

Вывод выражения для энергии. Выясним теперь, к каким изменениям в выражении для энергии частицы приводит формула для релятивистского импульса.

В релятивистской механике сила вводится таким образом, чтобы соотношение между приращением импульса частицы Др и импульсом силы было таким же, как и в классической физике:

Будем считать, что энергия частицы в релятивистской механике, как и в классической, представляет собой величину, изменение которой на перемещении равно работе действующей силы

Здесь перемещение частицы за время выражено через ее скорость Из формулы (7) и будем исходить при выводе выражения для релятивистской энергии.

Перепишем формулу (3) следующим образом:

Умножив обе части на и раскрыв скобки, получим

При движении частицы под действием силы ее скорость и импульс меняются. Для нахождения приращения левой части (8)

воспользуемся тем, что приращение квадрата любой переменной величины за малый промежуток времени приближенно равно

Применяя эту формулу к равенству (8) и учитывая, что правая часть остается при этом неизменной, получаем

откуда после сокращения на имеем

Правые части в выражениях (7) и (9) совпадают. Поэтому левая часть (9) представляет собой приращение кинетической энергии частицы:

Таким образом, приращение кинетической энергии частицы равно приращению ее релятивистской массы, умноженному на квадрат скорости света. Так как кинетическая энергия покоящейся частицы равна нулю, то из дифференциального соотношения (10), определяющего кинетическую энергию с точностью до константы, немедленно следует формула (6).

• Как с помощью мысленного эксперимента можно показать, что составляющая импульса частицы, перпендикулярная направлению относительной скорости двух систем отсчета, одинакова в обеих этих системах? Какую роль при этом играют соображения симметрии?

• Поясните связь зависимости релятивистской массы частицы от ее скорости с релятивистским кинематическим эффектом замедления времени.

Каким образом можно прийти к релятивистской формуле для кинетической энергии, основываясь на пропорциональности между приращениями кинетической энергии и релятивистской массы?

<< Предыдущий параграф Следующий параграф >>
Оглавление